20 动手实践:从字节码看并发编程的底层实现 本课时我们主要分享一个实践案例:从字节码看并发编程的底层实现。

我们在上一课时中简单学习了 JMM 的概念,知道了 Java 语言中一些默认的 happens-before 规则,是靠内存屏障完成的。其中的 lock 和 unlock 两个 Action,就属于粒度最大的两个操作。

如下图所示,Java 中的多线程,第一类是 Thread 类。它有三种实现方式:第 1 种是通过继承 Thread 覆盖它的 run 方法;第 2 种是通过 Runnable 接口,实现它的 run 方法;而第 3 种是通过创建线程,就是通过线程池的方法去创建。

多线程除了增加任务的执行速度,同样也有共享变量的同步问题。传统的线程同步方式,是使用 synchronized 关键字,或者 wait、notify 方法等,比如我们在第 15 课时中所介绍的,使用 jstack 命令可以观测到各种线程的状态。在目前的并发编程中,使用 concurrent 包里的工具更多一些。

img

线程模型

我们首先来看一下 JVM 的线程模型,以及它和操作系统进程之间的关系。

如下图所示,对于 Hotspot 来说,每一个 Java 线程,都会映射到一条轻量级进程中(LWP,Light Weight Process)。轻量级进程是用户进程调用系统内核所提供的一套接口,实际上它还需要调用更加底层的内核线程(KLT,Kernel-Level Thread)。而具体的功能,比如创建、同步等,则需要进行系统调用。

img

这些系统调用的操作,代价都比较高,需要在用户态(User Mode)和内核态(Kernel Mode)中来回切换,也就是我们常说的线程上下文切换( CS,Context Switch)。

使用 vmstat 命令能够方便地观测到这个数值。

img

Java 在保证正确的前提下,要想高效并发,就要尽量减少上下文的切换。

一般有下面几种做法来减少上下文的切换:

  • CAS 算法,比如 Java 的 Atomic 类,如果使用 CAS 来更新数据,则不需要加锁;
  • 减少锁粒度,多线程竞争会引起上下文的频繁切换,如果在处理数据的时候,能够将数据分段,即可减少竞争,Java 的 ConcurrentHashMap、LongAddr 等就是这样的思路;
  • 协程,在单线程里实现多任务调度,并在单线程里支持多个任务之间的切换;
  • 对加锁的对象进行智能判断,让操作更加轻量级。

CAS 和无锁并发一般是建立在 concurrent 包里面的 AQS 模型之上,大多数属于 Java 语言层面上的知识点。本课时在对其进行简单的描述后,会把重点放在普通锁的优化上。

CAS

CAS(Compare And Swap,比较并替换)机制中使用了 3 个基本操作数:内存地址 V、旧的预期值 A 和要修改的新值 B。更新一个变量时,只有当变量的预期值 A 和内存地址 V 当中的实际值相同时,才会将内存地址 V 对应的值修改为 B。

如果修改不成功,CAS 将不断重试。

拿 AtomicInteger 类来说,相关的代码如下: public final boolean compareAndSet(int expectedValue, int newValue) { return U.compareAndSetInt(this, VALUE, expectedValue, newValue); }

可以看到,这个操作,是由 jdk.internal.misc.Unsafe 类进行操作的,而这是一个 native 方法:

@HotSpotIntrinsicCandidate public final native boolean compareAndSetInt(Object o, long offset, int expected, int x);

我们继续向下跟踪,在 Linux 机器上参照 os_cpu/linux_x86/atomic_linux_x86.hpp:

template<> template inline T Atomic::PlatformCmpxchg<4>::operator()(T exchange_value, T volatile/* dest, T compare_value, atomic_memory_order //* order /*/) const { STATIC_ASSERT(4 == sizeof(T)); __asm__ volatile ("lock cmpxchgl %1,(%3)" : "=a" (exchange_value) : "r" (exchange_value), "a" (compare_value), "r" (dest) : "cc", "memory"); return exchange_value; }

可以看到,最底层的调用是汇编语言,而最重要的就是 cmpxchgl 指令,到这里没法再往下找代码了,也就是说 CAS 的原子性实际上是硬件 CPU 直接实现的。

synchronized

字节码

synchronized 可以在是多线程中使用的最多的关键字了。在开始介绍之前,请思考一个问题:在执行速度方面,是基于 CAS 的 Lock 效率高一些,还是同步关键字效率高一些?

synchronized 关键字给代码或者方法上锁时,会有显示或者隐藏的上锁对象。当一个线程试图访问同步代码块时,它必须先得到锁,而在退出或抛出异常时必须释放锁。

  • 给普通方法加锁时,上锁的对象是 this,如代码中的方法 m1 。
  • 给静态方法加锁时,锁的是 class 对象,如代码中的方法 m2 。
  • 给代码块加锁时,可以指定一个具体的对象。

关于对象对锁的争夺,我们依然拿前面讲的一张图来看一下这个过程。

img

下面我们来看一段简单的代码,并观测一下它的字节码。 public class SynchronizedDemo { synchronized void m1() { System.out.println(“m1”); } static synchronized void m2() { System.out.println(“m2”); } final Object lock = new Object(); void doLock() { synchronized (lock) { System.out.println(“lock”); } } }

下面是普通方法 m1 的字节码。

synchronized void m1(); descriptor: ()V flags: ACC_SYNCHRONIZED Code: stack=2, locals=1, args_size=1 0: getstatic /#4 3: ldc /#5 5: invokevirtual /#6 8: return

可以看到,在字节码的体现上,它只给方法加了一个 flag:ACC_SYNCHRONIZED。

静态方法 m2 和 m1 区别不大,只不过 flags 上多了一个参数:ACC_STATIC。

相比较起来,doLock 方法就麻烦了一些,其中出现了 monitorenter 和 monitorexit 等字节码指令。 void doLock(); descriptor: ()V flags: Code: stack=2, locals=3, args_size=1 0: aload_0 1: getfield /#3 // Field lock:Ljava/lang/Object; 4: dup 5: astore_1 6: monitorenter 7: getstatic /#4 // Field java/lang/System.out:Ljava/io/PrintStream; 10: ldc /#8 // String lock 12: invokevirtual /#6 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 15: aload_1 16: monitorexit 17: goto 25 20: astore_2 21: aload_1 22: monitorexit 23: aload_2 24: athrow 25: return Exception table: from to target type 7 17 20 any 20 23 20 any

很多人都认为,synchronized 是一种悲观锁、一种重量级锁;而基于 CAS 的 AQS 是一种乐观锁,这种理解并不全对。JDK1.6 之后,JVM 对同步关键字进行了很多的优化,这把锁有了不同的状态,大多数情况下的效率,已经和 concurrent 包下的 Lock 不相上下了,甚至更高。

对象内存布局

说到 synchronized 加锁原理,就不得不先说 Java 对象在内存中的布局,Java 对象内存布局如下图所示。

img

我来分别解释一下各个部分的含义。

Mark Word:用来存储 hashCode、GC 分代年龄、锁类型标记、偏向锁线程 ID、CAS 锁指向线程 LockRecord 的指针等,synconized 锁的机制与这里密切相关,这有点像 TCP/IP 中的协议头。

Class Pointer:用来存储对象指向它的类元数据指针、JVM 就是通过它来确定是哪个 Class 的实例。

Instance Data:存储的是对象真正有效的信息,比如对象中所有字段的内容。

Padding:HostSpot 规定对象的起始地址必须是 8 字节的整数倍,这是为了高效读取对象而做的一种“对齐”操作。

可重入锁

synchronized 是一把可重入锁。因此,在一个线程使用 synchronized 方法时可以调用该对象的另一个 synchronized 方法,即一个线程得到一个对象锁后再次请求该对象锁,是可以永远拿到锁的。

Java 中线程获得对象锁的操作是以线程而不是以调用为单位的。synchronized 锁的对象头的 Mark Work 中会记录该锁的线程持有者和计数器。当一个线程请求成功后,JVM 会记下持有锁的线程,并将计数器计为 1 。此时如果有其他线程请求该锁,则必须等待。而该持有锁的线程如果再次请求这个锁,就可以再次拿到这个锁,同时计数器会递增。当线程退出一个 synchronized 方法/块时,计数器会递减,如果计数器为 0 则释放该锁。

锁升级

根据使用情况,锁升级大体可以按照下面的路径:偏向锁→轻量级锁→重量级锁,锁只能升级不能降级,所以一旦锁升级为重量级锁,就只能依靠操作系统进行调度。

我们再看一下 Mark Word 的结构。其中,Biased 有 1 bit 大小,Tag 有 2 bit 大小,锁升级就是通过 Thread Id、Biased、Tag 这三个变量值来判断的。

img

偏向锁

偏向锁,其实是一把偏心锁(一般不这么描述)。在 JVM 中,当只有一个线程使用了锁的情况下,偏向锁才能够保证更高的效率。

当第 1 个线程第一次访问同步块时,会先检测对象头 Mark Word 中的标志位(Tag)是否为 01,以此来判断此时对象锁是否处于无锁状态或者偏向锁状态(匿名偏向锁)。

这也是锁默认的状态,线程一旦获取了这把锁,就会把自己的线程 ID 写到 Mark Word 中,在其他线程来获取这把锁之前,该线程都处于偏向锁状态。

轻量级锁

当下一个线程参与到偏向锁竞争时,会先判断 Mark Word 中保存的线程 ID 是否与这个线程 ID 相等,如果不相等,则会立即撤销偏向锁,升级为轻量级锁。

轻量级锁的获取是怎么进行的呢?它们使用的是自旋方式。

参与竞争的每个线程,会在自己的线程栈中生成一个 LockRecord ( LR ),然后每个线程通过 CAS(自旋)的操作将锁对象头中的 Mark Work 设置为指向自己的 LR 指针,哪个线程设置成功,就意味着哪个线程获得锁。在这种情况下,JVM 不会依赖内核进行线程调度。

当锁处于轻量级锁的状态时,就不能够再通过简单的对比 Tag 值进行判断了,每次对锁的获取,都需要通过自旋的操作。

当然,自旋也是面向不存在锁竞争的场景,比如一个线程运行完了,另外一个线程去获取这把锁。但如果自旋失败达到一定的次数(JVM 自动管理)时,就会膨胀为重量级锁。

重量级锁

重量级锁即为我们对 synchronized 的直观认识,在这种情况下,线程会挂起,进入到操作系统内核态,等待操作系统的调度,然后再映射回用户态。系统调用是昂贵的,重量级锁的名称也由此而来。

如果系统的共享变量竞争非常激烈,那么锁会迅速膨胀到重量级锁,这些优化也就名存实亡了。如果并发非常严重,则可以通过参数 -XX:-UseBiasedLocking 禁用偏向锁。这种方法在理论上会有一些性能提升,但实际上并不确定。

因为,synchronized 在 JDK,包括一些框架代码中的应用是非常广泛的。在一些不需要同步的场景中,即使加上了 synchronized 关键字,由于锁升级的原因,效率也不会太差。

下面这张图展示了三种锁的状态和 Mark Word 值的变化。

img

小结

在本课时中,我们首先介绍了多线程的一些特点,然后熟悉了 Java 中的线程和它在操作系统中的一些表现形式;还了解了,线程上下文切换会严重影响系统的性能,所以 Java 的锁有基于硬件 CAS 自旋,也有基于比较轻量级的“轻量级锁”和“偏向锁”。

它们的目标是,在不改变编程模型的基础上,尽量提高系统的性能,进行更加高效的并发。

参考资料

https://learn.lianglianglee.com/%e4%b8%93%e6%a0%8f/%e6%b7%b1%e5%85%a5%e6%b5%85%e5%87%ba%20Java%20%e8%99%9a%e6%8b%9f%e6%9c%ba-%e5%ae%8c/20%20%e5%8a%a8%e6%89%8b%e5%ae%9e%e8%b7%b5%ef%bc%9a%e4%bb%8e%e5%ad%97%e8%8a%82%e7%a0%81%e7%9c%8b%e5%b9%b6%e5%8f%91%e7%bc%96%e7%a8%8b%e7%9a%84%e5%ba%95%e5%b1%82%e5%ae%9e%e7%8e%b0.md