34 关于 Linux 网络,你必须知道这些(下) 你好,我是倪朋飞。

上一节,我带你学习了 Linux 网络的基础原理。简单回顾一下,Linux 网络根据 TCP/IP 模型,构建其网络协议栈。TCP/IP 模型由应用层、传输层、网络层、网络接口层等四层组成,这也是 Linux 网络栈最核心的构成部分。

应用程序通过套接字接口发送数据包时,先要在网络协议栈中从上到下逐层处理,然后才最终送到网卡发送出去;而接收数据包时,也要先经过网络栈从下到上的逐层处理,最后送到应用程序。

了解Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网络的性能情况。具体而言,哪些指标可以用来衡量 Linux 的网络性能呢?

性能指标

实际上,我们通常用带宽、吞吐量、延时、PPS(Packet Per Second)等指标衡量网络的性能。

  • 带宽,表示链路的最大传输速率,单位通常为 b/s (比特/秒)。
  • 吞吐量,表示单位时间内成功传输的数据量,单位通常为 b/s(比特/秒)或者 B/s(字节/秒)。吞吐量受带宽限制,而吞吐量/带宽,也就是该网络的使用率。
  • 延时,表示从网络请求发出后,一直到收到远端响应,所需要的时间延迟。在不同场景中,这一指标可能会有不同含义。比如,它可以表示,建立连接需要的时间(比如 TCP 握手延时),或一个数据包往返所需的时间(比如 RTT)。
  • PPS,是 Packet Per Second(包/秒)的缩写,表示以网络包为单位的传输速率。PPS 通常用来评估网络的转发能力,比如硬件交换机,通常可以达到线性转发(即 PPS 可以达到或者接近理论最大值)。而基于 Linux 服务器的转发,则容易受网络包大小的影响。

除了这些指标,网络的可用性(网络能否正常通信)、并发连接数(TCP连接数量)、丢包率(丢包百分比)、重传率(重新传输的网络包比例)等也是常用的性能指标。

接下来,请你打开一个终端,SSH登录到服务器上,然后跟我一起来探索、观测这些性能指标。

网络配置

分析网络问题的第一步,通常是查看网络接口的配置和状态。你可以使用 ifconfig 或者 ip 命令,来查看网络的配置。我个人更推荐使用 ip 工具,因为它提供了更丰富的功能和更易用的接口。 ifconfig 和 ip 分别属于软件包 net-tools 和 iproute2,iproute2 是 net-tools 的下一代。通常情况下它们会在发行版中默认安装。但如果你找不到 ifconfig 或者 ip 命令,可以安装这两个软件包。

以网络接口 eth0 为例,你可以运行下面的两个命令,查看它的配置和状态:

$ ifconfig eth0 eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 10.240.0.30 netmask 255.240.0.0 broadcast 10.255.255.255 inet6 fe80::20d:3aff:fe07:cf2a prefixlen 64 scopeid 0x20 ether 78:0d:3a:07:cf:3a txqueuelen 1000 (Ethernet) RX packets 40809142 bytes 9542369803 (9.5 GB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 32637401 bytes 4815573306 (4.8 GB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 $ ip -s addr show dev eth0 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000 link/ether 78:0d:3a:07:cf:3a brd ff:ff:ff:ff:ff:ff inet 10.240.0.30/12 brd 10.255.255.255 scope global eth0 valid_lft forever preferred_lft forever inet6 fe80::20d:3aff:fe07:cf2a/64 scope link valid_lft forever preferred_lft forever RX: bytes packets errors dropped overrun mcast 9542432350 40809397 0 0 0 193 TX: bytes packets errors dropped carrier collsns 4815625265 32637658 0 0 0 0

你可以看到,ifconfig 和 ip 命令输出的指标基本相同,只是显示格式略微不同。比如,它们都包括了网络接口的状态标志、MTU 大小、IP、子网、MAC 地址以及网络包收发的统计信息。

这些具体指标的含义,在文档中都有详细的说明,不过,这里有几个跟网络性能密切相关的指标,需要你特别关注一下。

第一,网络接口的状态标志。ifconfig 输出中的 RUNNING ,或 ip 输出中的 LOWER_UP ,都表示物理网络是连通的,即网卡已经连接到了交换机或者路由器中。如果你看不到它们,通常表示网线被拔掉了。

第二,MTU 的大小。MTU 默认大小是 1500,根据网络架构的不同(比如是否使用了 VXLAN 等叠加网络),你可能需要调大或者调小 MTU 的数值。

第三,网络接口的 IP 地址、子网以及 MAC 地址。这些都是保障网络功能正常工作所必需的,你需要确保配置正确。

第四,网络收发的字节数、包数、错误数以及丢包情况,特别是 TX 和 RX 部分的 errors、dropped、overruns、carrier 以及 collisions 等指标不为 0 时,通常表示出现了网络 I/O 问题。其中:

  • errors 表示发生错误的数据包数,比如校验错误、帧同步错误等;
  • dropped 表示丢弃的数据包数,即数据包已经收到了 Ring Buffer,但因为内存不足等原因丢包;
  • overruns 表示超限数据包数,即网络 I/O 速度过快,导致 Ring Buffer 中的数据包来不及处理(队列满)而导致的丢包;
  • carrier 表示发生 carrirer 错误的数据包数,比如双工模式不匹配、物理电缆出现问题等;
  • collisions 表示碰撞数据包数。

套接字信息

ifconfig 和 ip 只显示了网络接口收发数据包的统计信息,但在实际的性能问题中,网络协议栈中的统计信息,我们也必须关注。你可以用 netstat 或者 ss ,来查看套接字、网络栈、网络接口以及路由表的信息。

我个人更推荐,使用 ss 来查询网络的连接信息,因为它比 netstat 提供了更好的性能(速度更快)。

比如,你可以执行下面的命令,查询套接字信息: /# head -n 3 表示只显示前面3行 /# -l 表示只显示监听套接字 /# -n 表示显示数字地址和端口(而不是名字) /# -p 表示显示进程信息 $ netstat -nlp | head -n 3 Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 127.0.0.53:53 0.0.0.0:/* LISTEN 840/systemd-resolve /# -l 表示只显示监听套接字 /# -t 表示只显示 TCP 套接字 /# -n 表示显示数字地址和端口(而不是名字) /# -p 表示显示进程信息 $ ss -ltnp | head -n 3 State Recv-Q Send-Q Local Address:Port Peer Address:Port LISTEN 0 128 127.0.0.53%lo:53 0.0.0.0:/* users:((“systemd-resolve”,pid=840,fd=13)) LISTEN 0 128 0.0.0.0:22 0.0.0.0:/* users:((“sshd”,pid=1459,fd=3))

netstat 和 ss 的输出也是类似的,都展示了套接字的状态、接收队列、发送队列、本地地址、远端地址、进程 PID 和进程名称等。

其中,接收队列(Recv-Q)和发送队列(Send-Q)需要你特别关注,它们通常应该是 0。当你发现它们不是 0 时,说明有网络包的堆积发生。当然还要注意,在不同套接字状态下,它们的含义不同。

当套接字处于连接状态(Established)时,

  • Recv-Q 表示套接字缓冲还没有被应用程序取走的字节数(即接收队列长度)。
  • 而 Send-Q 表示还没有被远端主机确认的字节数(即发送队列长度)。

当套接字处于监听状态(Listening)时,

  • Recv-Q 表示全连接队列的长度。
  • 而 Send-Q 表示全连接队列的最大长度。

所谓全连接,是指服务器收到了客户端的 ACK,完成了 TCP 三次握手,然后就会把这个连接挪到全连接队列中。这些全连接中的套接字,还需要被 accept() 系统调用取走,服务器才可以开始真正处理客户端的请求。

与全连接队列相对应的,还有一个半连接队列。所谓半连接是指还没有完成 TCP 三次握手的连接,连接只进行了一半。服务器收到了客户端的 SYN 包后,就会把这个连接放到半连接队列中,然后再向客户端发送 SYN+ACK 包。

协议栈统计信息

类似的,使用 netstat 或 ss ,也可以查看协议栈的信息: $ netstat -s … Tcp: 3244906 active connection openings 23143 passive connection openings 115732 failed connection attempts 2964 connection resets received 1 connections established 13025010 segments received 17606946 segments sent out 44438 segments retransmitted 42 bad segments received 5315 resets sent InCsumErrors: 42 … $ ss -s Total: 186 (kernel 1446) TCP: 4 (estab 1, closed 0, orphaned 0, synrecv 0, timewait 0/0), ports 0 Transport Total IP IPv6 /* 1446 - - RAW 2 1 1 UDP 2 2 0 TCP 4 3 1 …

这些协议栈的统计信息都很直观。ss 只显示已经连接、关闭、孤儿套接字等简要统计,而netstat 则提供的是更详细的网络协议栈信息。

比如,上面 netstat 的输出示例,就展示了 TCP 协议的主动连接、被动连接、失败重试、发送和接收的分段数量等各种信息。

网络吞吐和 PPS

接下来,我们再来看看,如何查看系统当前的网络吞吐量和 PPS。在这里,我推荐使用我们的老朋友 sar,在前面的 CPU、内存和 I/O 模块中,我们已经多次用到它。

给 sar 增加 -n 参数就可以查看网络的统计信息,比如网络接口(DEV)、网络接口错误(EDEV)、TCP、UDP、ICMP 等等。执行下面的命令,你就可以得到网络接口统计信息: /# 数字1表示每隔1秒输出一组数据 $ sar -n DEV 1 Linux 4.15.0-1035 (ubuntu) 01/06/19 x86_64 (2 CPU) 13:21:40 IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s %ifutil 13:21:41 eth0 18.00 20.00 5.79 4.25 0.00 0.00 0.00 0.00 13:21:41 docker0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13:21:41 lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

这儿输出的指标比较多,我来简单解释下它们的含义。

  • rxpck/s 和 txpck/s 分别是接收和发送的 PPS,单位为包/秒。
  • rxkB/s 和 txkB/s 分别是接收和发送的吞吐量,单位是KB/秒。
  • rxcmp/s 和 txcmp/s 分别是接收和发送的压缩数据包数,单位是包/秒。
  • %ifutil 是网络接口的使用率,即半双工模式下为 (rxkB/s+txkB/s)/Bandwidth,而全双工模式下为 max(rxkB/s, txkB/s)/Bandwidth。

其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡: $ ethtool eth0 | grep Speed Speed: 1000Mb/s

连通性和延时

最后,我们通常使用 ping ,来测试远程主机的连通性和延时,而这基于 ICMP 协议。比如,执行下面的命令,你就可以测试本机到 114.114.114.114 这个 IP 地址的连通性和延时: /# -c3表示发送三次ICMP包后停止 $ ping -c3 114.114.114.114 PING 114.114.114.114 (114.114.114.114) 56(84) bytes of data. 64 bytes from 114.114.114.114: icmp_seq=1 ttl=54 time=244 ms 64 bytes from 114.114.114.114: icmp_seq=2 ttl=47 time=244 ms 64 bytes from 114.114.114.114: icmp_seq=3 ttl=67 time=244 ms — 114.114.114.114 ping statistics — 3 packets transmitted, 3 received, 0% packet loss, time 2001ms rtt min/avg/max/mdev = 244.023/244.070/244.105/0.034 ms

ping 的输出,可以分为两部分。

  • 第一部分,是每个 ICMP 请求的信息,包括 ICMP 序列号(icmp_seq)、TTL(生存时间,或者跳数)以及往返延时。
  • 第二部分,则是三次 ICMP 请求的汇总。

比如上面的示例显示,发送了 3 个网络包,并且接收到 3 个响应,没有丢包发生,这说明测试主机到 114.114.114.114 是连通的;平均往返延时(RTT)是 244ms,也就是从发送 ICMP 开始,到接收到 114.114.114.114 回复的确认,总共经历 244ms。

小结

我们通常使用带宽、吞吐量、延时等指标,来衡量网络的性能;相应的,你可以用 ifconfig、netstat、ss、sar、ping 等工具,来查看这些网络的性能指标。

在下一节中,我将以经典的 C10K 和 C100K 问题,带你进一步深入 Linux 网络的工作原理。

思考

最后,我想请你来聊聊,你理解的 Linux 网络性能。你常用什么指标来衡量网络的性能?又用什么思路分析相应性能问题呢?你可以结合今天学到的知识,提出自己的观点。

欢迎在留言区和我讨论,也欢迎你把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中进步。

参考资料

https://learn.lianglianglee.com/%e4%b8%93%e6%a0%8f/Linux%e6%80%a7%e8%83%bd%e4%bc%98%e5%8c%96%e5%ae%9e%e6%88%98/34%20%e5%85%b3%e4%ba%8e%20Linux%20%e7%bd%91%e7%bb%9c%ef%bc%8c%e4%bd%a0%e5%bf%85%e9%a1%bb%e7%9f%a5%e9%81%93%e8%bf%99%e4%ba%9b%ef%bc%88%e4%b8%8b%ef%bc%89.md