Facet说明

我们在浏览网站的时候,经常会遇到按某一类条件查询的情况,这种情况尤以电商网站最多,以天猫商城为例,我们选择某一个品牌,系统会将该品牌对应的商品展示出来,效果图如下:

Facet

如上图,我们关注的是品牌,选购热点等方面,对于类似的功能我们用lucene的term查询当然可以,但是在数据量特别大的情况下还用普通查询来实现显然会因为FSDirectory.open等耗时的操作造成查询效率的低下,同时普通查询是全部document都扫描一遍,这样显然造成了查询效率低;

lucene 提供了facet 查询用于对同一类的document进行聚类化,这样在查询的时候先关注某一个方面,这种显然缩小了查询范围,进而提升了查询效率;

facet 是什么?

facet,英文翻译为方面。Lucene中的facet查询其实就是对事物的方面查询。

我们以手机举例。一个手机可以有品牌,型号,运营商等多个facet,不同的facet类型可以组合成不同的手机或者手机的集合。如品牌为小米,运营商为移动构成的就是移动发行的所有小米的手机型号(小米1,小米2,小米3)等。而品牌为小米,型号为小米4构成的手机集合就是小米四的所有运营商发行版(小米4移动版,小米4联通版,小米4电信版等)。我们在对一样事物的搜索时也时常使用这种方式,先确定手机品牌,再逐步对型号,运营商等方面进行限制最终得到想要的结果。

下面介绍怎么在Lucene中如何使用facet

使用方式

facet 模块提供了多个用于处理facet的统计和值处理的方法;

要实现facet的功能,我们需要了解facetField,FacetField定义了dim和此field对应的path,需要特别注意的是我们在做facetField索引的时候,需要事先调用FacetsConfig.build(Document);

FacetField的indexOptions设置为了DOCS_AND_FREQS_AND_POSITIONS的,即既索引又统计出现的频次和出现的位置,这样做主要是为了方便查询和统计;

相应的在存储的时候我们需要利用 FacetsConfig 和 DirectoryTaxonomyWriter;

DirectoryTaxonomyWriter 用来利用 Directory 来存储 Taxono 信息到硬盘;

DirectoryTaxonomyWriter 源码浅析

DirectoryTaxonomyWriter 的构造器如下:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
public DirectoryTaxonomyWriter(Directory directory, OpenMode openMode, TaxonomyWriterCache cache) throws IOException { dir = directory; IndexWriterConfig config = createIndexWriterConfig(openMode); indexWriter = openIndexWriter(dir, config); // verify (to some extent) that merge policy in effect would preserve category docids assert !(indexWriter.getConfig().getMergePolicy() instanceof TieredMergePolicy) : "for preserving category docids, merging none-adjacent segments is not allowed"; // after we opened the writer, and the index is locked, it's safe to check // the commit data and read the index epoch openMode = config.getOpenMode(); if (!DirectoryReader.indexExists(directory)) { indexEpoch = 1; } else { String epochStr = null; Map<String, String> commitData = readCommitData(directory); if (commitData != null) { epochStr = commitData.get(INDEX_EPOCH); } // no commit data, or no epoch in it means an old taxonomy, so set its epoch to 1, for lack // of a better value. indexEpoch = epochStr == null ? 1 : Long.parseLong(epochStr, 16); } if (openMode == OpenMode.CREATE) { ++indexEpoch; } FieldType ft = new FieldType(TextField.TYPE_NOT_STORED); ft.setOmitNorms(true); parentStreamField = new Field(Consts.FIELD_PAYLOADS, parentStream, ft); fullPathField = new StringField(Consts.FULL, "", Field.Store.YES); nextID = indexWriter.maxDoc(); if (cache == null) { cache = defaultTaxonomyWriterCache(); } this.cache = cache; if (nextID == 0) { cacheIsComplete = true; // Make sure that the taxonomy always contain the root category // with category id 0. addCategory(new FacetLabel()); } else { // There are some categories on the disk, which we have not yet // read into the cache, and therefore the cache is incomplete. // We choose not to read all the categories into the cache now, // to avoid terrible performance when a taxonomy index is opened // to add just a single category. We will do it later, after we // notice a few cache misses. cacheIsComplete = false; } }

由上述代码可知,DirectoryTaxonomyWriter先打开一个IndexWriter,在确保indexWriter打开和locked的前提下,读取directory对应的segments中需要提交的内容,如果读取到的内容为空,说明是上次的内容,设置indexEpoch为1,接着对cache进行设置;判断directory中是否还包含有document,如果有设置cacheIsComplete为false,反之为true;

编程实战

maven

引入依赖:

  [xml]
1
2
3
4
5
6
7
<!--引入方面查询(facet search)的依赖--> <!-- https://mvnrepository.com/artifact/org.apache.lucene/lucene-facet --> <dependency> <groupId>org.apache.lucene</groupId> <artifactId>lucene-facet</artifactId> <version>7.2.1</version> </dependency>

创建索引

建立普通索引的同时建立 TaxonomyIndex(分类索引)

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public static void buildIndex(String indexDir, String taxoDir) throws Exception{ Directory directory = FSDirectory.open(Paths.get(indexDir)); IndexWriter writer = new IndexWriter(directory, new IndexWriterConfig(new WhitespaceAnalyzer())); //使用DirectoryTaxonomyWriter写入进行切面查询所需要的Taxonomy索引 Directory taxioDirectory = FSDirectory.open(Paths.get(taxoDir)); DirectoryTaxonomyWriter taxoWriter = new DirectoryTaxonomyWriter(taxioDirectory); FacetsConfig config = new FacetsConfig(); Document doc = new Document(); doc.add(new TextField("device", "手机", Field.Store.YES)); doc.add(new TextField("name", "米1", Field.Store.YES)); doc.add(new FacetField("brand", "小米")); doc.add(new FacetField("network", "移动4G")); //写入索引的同时写入taxo索引 writer.addDocument(config.build(taxoWriter, doc)); doc = new Document(); doc.add(new TextField("device", "手机", Field.Store.YES)); doc.add(new TextField("name", "米4", Field.Store.YES)); doc.add(new FacetField("brand", "小米")); doc.add(new FacetField("network", "联通4G")); writer.addDocument(config.build(taxoWriter, doc)); doc = new Document(); doc.add(new TextField("device", "手机", Field.Store.YES)); doc.add(new TextField("name", "荣耀6", Field.Store.YES)); doc.add(new FacetField("brand", "华为")); doc.add(new FacetField("network", "移动4G")); writer.addDocument(config.build(taxoWriter, doc)); doc = new Document(); doc.add(new TextField("device", "电视", Field.Store.YES)); doc.add(new TextField("name", "小米电视2", Field.Store.YES)); doc.add(new FacetField("brand", "小米")); writer.addDocument(config.build(taxoWriter, doc)); writer.close(); taxoWriter.close(); }

索引查询

对facet查询进行测试,实现如下:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
public static void testFacetSearch(String indexDir, String taxoDir) throws Exception{ Directory directory = FSDirectory .open(Paths.get(indexDir)); DirectoryReader indexReader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(indexReader); //同时还需要taxonomy reader Directory taxoDirectory = FSDirectory .open(Paths.get(taxoDir)); TaxonomyReader taxoReader = new DirectoryTaxonomyReader(taxoDirectory); FacetsConfig config = new FacetsConfig(); //相应的Collector是必不可少的 FacetsCollector facetsCollector = new FacetsCollector(); //按照手机这个维度查询 System.out.println("---------手机----------"); TermQuery query = new TermQuery(new Term("device", "手机")); TopDocs docs = FacetsCollector.search(searcher, query, 10, facetsCollector); printDocs(docs, searcher); System.out.println("----------facet-----------"); Facets facets = new FastTaxonomyFacetCounts(taxoReader, config, facetsCollector); List<FacetResult> results = facets.getAllDims(10); //打印其他维度信息 for (FacetResult tmp : results){ System.out.println(tmp); } System.out.println("======================="); //2.drill down,品牌选小米 System.out.println("-----小米手机-----"); DrillDownQuery drillDownQuery = new DrillDownQuery(config, query); drillDownQuery.add("brand", "小米"); //要new新collector,否则会累加 FacetsCollector fc1 = new FacetsCollector(); docs = FacetsCollector.search(searcher, drillDownQuery, 10, fc1); printDocs(docs, searcher); System.out.println("----------facet-----------"); facets = new FastTaxonomyFacetCounts(taxoReader, config, fc1); results = facets.getAllDims(10); //获得小米手机的分布,总数2个,网络:移动4G 1个,联通4G 1个 for (FacetResult tmp : results) { System.out.println(tmp); } System.out.println("======================="); //3.drill down,在brand这个facet选择了小米之后继续选择另一个方面network为移动4G System.out.println("-----移动4G小米手机-----"); //可以看到使用的是同一个DrillDownQuery drillDownQuery.add("network", "移动4G"); FacetsCollector fc2 = new FacetsCollector(); docs = FacetsCollector.search(searcher, drillDownQuery, 10, fc2); printDocs(docs, searcher); System.out.println("----------facet-----------"); facets = new FastTaxonomyFacetCounts(taxoReader, config, fc2); results = facets.getAllDims(10); for (FacetResult tmp : results) { System.out.println(tmp); } System.out.println("======================="); //使用sideWay查看其它平行维度的信息 System.out.println("-----小米手机drill sideways-----"); DrillSideways ds = new DrillSideways(searcher, config, taxoReader); DrillDownQuery drillDownQuery1 = new DrillDownQuery(config, query); drillDownQuery1.add("brand", "小米"); DrillSideways.DrillSidewaysResult result = ds.search(drillDownQuery1, 10); docs = result.hits; printDocs(docs, searcher); System.out.println("----------facet-----------"); results = result.facets.getAllDims(10); for (FacetResult tmp : results) { System.out.println(tmp); } System.out.println("======================="); indexReader.close(); taxoReader.close(); }

其中输出方法实现如下:

  [java]
1
2
3
4
5
6
7
private static void printDocs(TopDocs topDocs, IndexSearcher searcher) throws IOException { ScoreDoc[] docs = topDocs.scoreDocs; for (ScoreDoc doc : docs) { Document document = searcher.doc(doc.doc); System.out.println(document.get("name")); } }

测试代码

测试代码如下:

  [java]
1
2
3
4
5
final String indexDir = "data/facet/index"; final String taxoDir = "data/facet/taxo"; buildIndex(indexDir, taxoDir); testFacetSearch(indexDir, taxoDir);

输出内容如下:

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---------手机---------- 米1 米4 荣耀6 ----------facet----------- dim=brand path=[] value=3 childCount=2 小米 (2) 华为 (1) dim=network path=[] value=3 childCount=2 移动4G (2) 联通4G (1) ======================= -----小米手机----- 米1 米4 ----------facet----------- dim=brand path=[] value=2 childCount=1 小米 (2) dim=network path=[] value=2 childCount=2 移动4G (1) 联通4G (1) ======================= -----移动4G小米手机----- 米1 ----------facet----------- dim=brand path=[] value=1 childCount=1 小米 (1) dim=network path=[] value=1 childCount=1 移动4G (1) ======================= -----小米手机drill sideways----- 米1 米4 ----------facet----------- dim=brand path=[] value=3 childCount=2 小米 (2) 华为 (1) dim=network path=[] value=2 childCount=2 移动4G (1) 联通4G (1) =======================

参考资料

一步一步跟我学习lucene(14)—lucene搜索之facet查询原理和facet查询实例

lucene使用facet搜索