Redis Learn-11-02-ServerCron
serverCron 简介
在 Redis 中, 常规操作由 redis.c/serverCron 实现, 它主要执行以下操作
serverCron函数每100毫秒执行一次,负责管理服务器资源,并保持服务器自身的良好运转。
/* This is our timer interrupt, called server.hz times per second.
* Here is where we do a number of things that need to be done asynchronously.
* For instance:
*
* - Active expired keys collection (it is also performed in a lazy way on
* lookup).
* - Software watchdog.
* - Update some statistic.
* - Incremental rehashing of the DBs hash tables.
* - Triggering BGSAVE / AOF rewrite, and handling of terminated children.
* - Clients timeout of different kinds.
* - Replication reconnection.
* - Many more...
*
* Everything directly called here will be called server.hz times per second,
* so in order to throttle execution of things we want to do less frequently
* a macro is used: run_with_period(milliseconds) { .... }
*/
执行操作
更新服务器的各类统计信息,比如时间、内存占用、数据库占用情况等
清理数据库中的过期键值对
对不合理的数据库进行大小调整
关闭和清理连接失效的客户端
尝试进行 AOF 或 RDB 持久化操作
如果服务器是主节点的话,对附属节点进行定期同步
如果处于集群模式的话,对集群进行定期同步和连接测试
Redis 将 serverCron 作为时间事件来运行, 从而确保它每隔一段时间就会自动运行一次, 又因为 serverCron 需要在 Redis 服务器运行期间一直定期运行, 所以它是一个循环时间事件: serverCron 会一直定期执行,直到服务器关闭为止。
运行周期
在 Redis 2.6 版本中, 程序规定 serverCron 每秒运行 10 次, 平均每 100 毫秒运行一次。
从 Redis 2.8 开始, 用户可以通过修改 hz 选项来调整 serverCron的每秒执行次数, 具体信息请参考 redis.conf 文件中关于 hz 选项的说明,也叫定时删除,这里的“定期”指的是Redis定期触发的清理策略,由位于src/redis.c的 activeExpireCycle(void)
函数来完成。
serverCron是由redis的事件框架驱动的定位任务,这个定时任务中会调用activeExpireCycle函数,针对每个db在限制的时间REDIS_EXPIRELOOKUPS_TIME_LIMIT内迟可能多的删除过期key,之所以要限制时间是为了防止过长时间的阻塞影响redis的正常运行。
这种主动删除策略弥补了被动删除策略在内存上的不友好。
主动删除执行步骤
因此,Redis会周期性的随机测试一批设置了过期时间的key并进行处理。
测试到的已过期的key将被删除。典型的方式为,Redis每秒做10次如下的步骤:
随机测试100个设置了过期时间的key
删除所有发现的已过期的key
若删除的key超过25个则重复步骤1
这是一个基于概率的简单算法,基本的假设是抽出的样本能够代表整个key空间,redis持续清理过期的数据直至将要过期的key的百分比降到了25%以下。
这也意味着在任何给定的时刻已经过期但仍占据着内存空间的key的量最多为每秒的写操作量除以4.
Redis-3.0.0中的默认值是10,代表每秒钟调用10次后台任务。
淘汰任务的最大时长
除了主动淘汰的频率外,Redis对每次淘汰任务执行的最大时长也有一个限定,这样保证了每次主动淘汰不会过多阻塞应用请求,以下是这个限定计算公式:
#define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25 /* CPU max % for keys collection */
//...
timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
hz调大将会提高Redis主动淘汰的频率,如果你的Redis存储中包含很多冷数据占用内存过大的话,可以考虑将这个值调大,但Redis作者建议这个值不要超过100。
我们实际线上将这个值调大到100,观察到CPU会增加2%左右,但对冷数据的内存释放速度确实有明显的提高(通过观察keyspace个数和used_memory大小)。
可以看出timelimit和server.hz是一个倒数的关系,也就是说hz配置越大,timelimit就越小。换句话说是每秒钟期望的主动淘汰频率越高,则每次淘汰最长占用时间就越短。这里每秒钟的最长淘汰占用时间是固定的250ms(1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/100),而淘汰频率和每次淘汰的最长时间是通过hz参数控制的。
从以上的分析看,当redis中的过期key比率没有超过25%之前,提高hz可以明显提高扫描key的最小个数。
假设hz为10,则一秒内最少扫描200个key(一秒调用10次*每次最少随机取出20个key),如果hz改为100,则一秒内最少扫描2000个key;另一方面,如果过期key比率超过25%,则扫描key的个数无上限,但是cpu时间每秒钟最多占用250ms。
当REDIS运行在主从模式时,只有主结点才会执行上述这两种过期删除策略,然后把删除操作”del key”同步到从结点。(AOF 同步的感觉)
serverCron函数
serverCron 函数的三个参数,在函数内部都没有被使用,会有警告出来,所以使用REDIS_NOTUSED去除,不使用,为什么还传递这三个参数呢?
一个特殊的宏
#define run_with_period(_ms_) if ((_ms_ server.stat_peak_memory)
server.stat_peak_memory = zmalloc_used_memory();
/* Sample the RSS here since this is a relatively slow call. */
server.resident_set_size = zmalloc_get_rss();
/* We received a SIGTERM, shutting down here in a safe way, as it is
* not ok doing so inside the signal handler. */
if (server.shutdown_asap) {
if (prepareForShutdown(0) == REDIS_OK) exit(0);
redisLog(REDIS_WARNING,"SIGTERM received but errors trying to shut down the server, check the logs for more information");
server.shutdown_asap = 0;
}
/* Show some info about non-empty databases */
run_with_period(5000) {
for (j = 0; j = sp->changes &&
server.unixtime-server.lastsave > sp->seconds &&
(server.unixtime-server.lastbgsave_try >
REDIS_BGSAVE_RETRY_DELAY ||
server.lastbgsave_status == REDIS_OK))
{
redisLog(REDIS_NOTICE,"%d changes in %d seconds. Saving...",
sp->changes, (int)sp->seconds);
rdbSaveBackground(server.rdb_filename);
break;
}
}
/* Trigger an AOF rewrite if needed */
if (server.rdb_child_pid == -1 &&
server.aof_child_pid == -1 &&
server.aof_rewrite_perc &&
server.aof_current_size > server.aof_rewrite_min_size)
{
long long base = server.aof_rewrite_base_size ?
server.aof_rewrite_base_size : 1;
long long growth = (server.aof_current_size*100/base) - 100;
if (growth >= server.aof_rewrite_perc) {
redisLog(REDIS_NOTICE,"Starting automatic rewriting of AOF on %lld%% growth",growth);
rewriteAppendOnlyFileBackground();
}
}
}
/* AOF postponed flush: Try at every cron cycle if the slow fsync
* completed. */
if (server.aof_flush_postponed_start) flushAppendOnlyFile(0);
/* AOF write errors: in this case we have a buffer to flush as well and
* clear the AOF error in case of success to make the DB writable again,
* however to try every second is enough in case of 'hz' is set to
* an higher frequency. */
run_with_period(1000) {
if (server.aof_last_write_status == REDIS_ERR)
flushAppendOnlyFile(0);
}
/* Close clients that need to be closed asynchronous */
freeClientsInAsyncFreeQueue();
/* Clear the paused clients flag if needed. */
clientsArePaused(); /* Don't check return value, just use the side effect. */
/* Replication cron function -- used to reconnect to master and
* to detect transfer failures. */
run_with_period(1000) replicationCron();
/* Run the Redis Cluster cron. */
run_with_period(100) {
if (server.cluster_enabled) clusterCron();
}
/* Run the Sentinel timer if we are in sentinel mode. */
run_with_period(100) {
if (server.sentinel_mode) sentinelTimer();
}
/* Cleanup expired MIGRATE cached sockets. */
run_with_period(1000) {
migrateCloseTimedoutSockets();
}
server.cronloops++;
return 1000/server.hz;
}