操作系统学习(5)信号量与管程
信号量:整型、记录型信号量以及利用信号量实现进程互斥和前驱关系
信号量机构是一种功能较强的机制,可用来解决互斥与同步的问题,它只能被两个标准的原语wait(S)和signal(S)来访问,也可以记为“P操作”和“V操作”。
原语是指完成某种功能且不被分割不被中断执行的操作序列,通常可由硬件来实现完成不被分割执行特性的功能。
如前述的“Test-and-Set”和“Swap”指令,就是由硬件实现的原子操作。原语功能的不被中断执行特性在单处理机时可由软件通过屏蔽中断方法实现。
原语之所以不能被中断执行,是因为原语对变量的操作过程如果被打断,可能会去运行另一个对同一变量的操作过程,从而出现临界段问题。
如果能够找到一种解决临界段问题的元方法,就可以实现对共享变量操作的原子性。
整型信号量
整型信号量被定义为一个用于表示资源数目的整型量S,wait和signal操作可描述为:
wait(S){
while (S S2、 S1 -> S3的前驱关系,应分别设置信号量a1、a2。
同样,为了保证 S2 -> S4、S2 ->S5、S3 -> S6、S4 -> S6、S5 -> S6,应设置信号量bl、b2、c、d、e。

## 算法
```c
semaphore al=a2=bl=b2=c=d=e=0; //初始化信号量
S1() {
// …
V(al); V(a2) ; //S1已经运行完成
}
S2() {
P(a1); //检查S1是否运行完成
// …
V(bl); V(b2); // S2已经运行完成
}
S3() {
P(a2); //检查S1是否已经运行完成
// …
V(c); //S3已经运行完成
}
S4() {
P(b1); //检查S2是否已经运行完成
// …
V(d); //S4已经运行完成
}
S5() {
P(b2); //检查S2是否已经运行完成
// …
V(e); // S5已经运行完成
}
S6() {
P(c); //检查S3是否已经运行完成
P(d); //检查S4是否已经运行完成
P(e); //检查S5是否已经运行完成
// …;
}
分析进程同步和互斥问题的方法步骤
关系分析。找出问题中的进程数,并且分析它们之间的同步和互斥关系。同步、互斥、前驱关系直接按照上面例子中的经典范式改写。
整理思路。找出解决问题的关键点,并且根据做过的题目找出解决的思路。根据进程的操作流程确定P操作、V操作的大致顺序。
设置信号量。根据上面两步,设置需要的信号量,确定初值,完善整理。
管程
定义
系统中的各种硬件资源和软件资源,均可用数据结构抽象地描述其资源特性,即用少量信息和对资源所执行的操作来表征该资源,而忽略了它们的内部结构和实现细节。
管程是由一组数据以及定义在这组数据之上的对这组数据的操作组成的软件模块,这组操作能初始化并改变管程中的数据和同步进程。
管程的组成
局部于管程的共享结构数据说明。
对该数据结构进行操作的一组过程。
对局部于管程的共享数据设置初始值的语句。
管程的基本特性
局部于管程的数据只能被局部于管程内的过程所访问。
一个进程只有通过调用管程内的过程才能进入管程访问共享数据。
每次仅允许一个进程在管程内执行某个内部过程。
由于管程是一个语言成分,所以管程的互斥访问完全由编译程序在编译时自动添加,无需程序员关注,而且保证正确。