使用 transform 进行数据转换
Apache EChartsTM 5 开始支持了“数据转换”( data transform )功能。
在 echarts 中,“数据转换” 这个词指的是,给定一个已有的“数据集”(dataset)和一个“转换方法”(transform),echarts 能生成一个新的“数据集”,然后可以使用这个新的“数据集”绘制图表。
这些工作都可以声明式地完成。
抽象地来说,数据转换是这样一种公式:outData = f(inputData)。
f 是转换方法,例如:filter、sort、regression、boxplot、cluster、aggregate(todo) 等等。
有了数据转换能力后,我们就至少可以做到这些事情:
-
把数据分成多份用不同的饼图展现。
-
进行一些数据统计运算,并展示结果。
-
用某些数据可视化算法处理数据,并展示结果。
-
数据排序。
-
去除或直选择数据项。
…
数据转换基础使用
在 echarts 中,数据转换是依托于数据集(dataset)来实现的. 我们可以设置 dataset.transform 来表示,此 dataset 的数据,来自于此 transform 的结果。
下面是上述例子的效果,三个饼图分别显示了 2011、2012、2013 年的数据。
var option = {
dataset: [
{
// 这个 dataset 的 index 是 `0`。
source: [
['Product', 'Sales', 'Price', 'Year'],
['Cake', 123, 32, 2011],
['Cereal', 231, 14, 2011],
['Tofu', 235, 5, 2011],
['Dumpling', 341, 25, 2011],
['Biscuit', 122, 29, 2011],
['Cake', 143, 30, 2012],
['Cereal', 201, 19, 2012],
['Tofu', 255, 7, 2012],
['Dumpling', 241, 27, 2012],
['Biscuit', 102, 34, 2012],
['Cake', 153, 28, 2013],
['Cereal', 181, 21, 2013],
['Tofu', 395, 4, 2013],
['Dumpling', 281, 31, 2013],
['Biscuit', 92, 39, 2013],
['Cake', 223, 29, 2014],
['Cereal', 211, 17, 2014],
['Tofu', 345, 3, 2014],
['Dumpling', 211, 35, 2014],
['Biscuit', 72, 24, 2014]
]
// id: 'a'
},
{
// 这个 dataset 的 index 是 `1`。
// 这个 `transform` 配置,表示,此 dataset 的数据,来自于此 transform 的结果。
transform: {
type: 'filter',
config: { dimension: 'Year', value: 2011 }
}
// 我们还可以设置这些可选的属性: `fromDatasetIndex` 或 `fromDatasetId`。
// 这些属性,指定了,transform 的输入,来自于哪个 dataset。例如,
// `fromDatasetIndex: 0` 表示输入来自于 index 为 `0` 的 dataset 。又例如,
// `fromDatasetId: 'a'` 表示输入来自于 `id: 'a'` 的 dataset。
// 当这些属性都不指定时,默认认为,输入来自于 index 为 `0` 的 dataset 。
},
{
// 这个 dataset 的 index 是 `2`。
// 同样,这里因为 `fromDatasetIndex` 和 `fromDatasetId` 都没有被指定,
// 那么输入默认来自于 index 为 `0` 的 dataset 。
transform: {
// 这个类型为 "filter" 的 transform 能够遍历并筛选出满足条件的数据项。
type: 'filter',
// 每个 transform 如果需要有配置参数的话,都须配置在 `config` 里。
// 在这个 "filter" transform 中,`config` 用于指定筛选条件。
// 下面这个筛选条件是:选出维度( dimension )'Year' 中值为 2012 的所有
// 数据项。
config: { dimension: 'Year', value: 2012 }
}
},
{
// 这个 dataset 的 index 是 `3`。
transform: {
type: 'filter',
config: { dimension: 'Year', value: 2013 }
}
}
],
series: [
{
type: 'pie',
radius: 50,
center: ['25%', '50%'],
// 这个饼图系列,引用了 index 为 `1` 的 dataset 。也就是,引用了上述
// 2011 年那个 "filter" transform 的结果。
datasetIndex: 1
},
{
type: 'pie',
radius: 50,
center: ['50%', '50%'],
datasetIndex: 2
},
{
type: 'pie',
radius: 50,
center: ['75%', '50%'],
datasetIndex: 3
}
]
};
现在我们简单总结下,使用 transform 时的几个要点:
在一个空的 dataset 中声明 transform, fromDatasetIndex/fromDatasetId 来表示我们要生成新的数据。
系列引用这个 dataset 。
数据转换的进阶使用
链式声明 transform
transform 可以被链式声明,这是一个语法糖。
option = {
dataset: [
{
source: [
// 原始数据
]
},
{
// 几个 transform 被声明成 array ,他们构成了一个链,
// 前一个 transform 的输出是后一个 transform 的输入。
transform: [
{
type: 'filter',
config: { dimension: 'Product', value: 'Tofu' }
},
{
type: 'sort',
config: { dimension: 'Year', order: 'desc' }
}
]
}
],
series: {
type: 'pie',
// 这个系列引用上述 transform 的结果。
datasetIndex: 1
}
};
注意:理论上,任何 transform 都可能有多个输入或多个输出。但是,如果一个 transform 被链式声明,它只能获取前一个 transform 的第一个输出作为输入(第一个 transform 除外),以及它只能把自己的第一个输出给到后一个 transform (最后一个 transform 除外)。
一个 transform 输出多个 data
在大多数场景下,transform 只需输出一个 data 。但是也有一些场景,需要输出多个 data ,每个 data 可以被不同的 series 或者 dataset 所使用。
例如,在内置的 “boxplot” transform 中,除了 boxplot 系列所需要的 data 外,离群点( outlier )也会被生成,并且可以用例如散点图系列显示出来。例如,example。
我们提供配置 dataset.fromTransformResult 来满足这种情况,例如:
option = {
dataset: [
{
// 这个 dataset 的 index 为 `0`。
source: [
// 原始数据
]
},
{
// 这个 dataset 的 index 为 `1`。
transform: {
type: 'boxplot'
}
// 这个 "boxplot" transform 生成了两个数据:
// result[0]: boxplot series 所需的数据。
// result[1]: 离群点数据。
// 当其他 series 或者 dataset 引用这个 dataset 时,他们默认只能得到
// result[0] 。
// 如果想要他们得到 result[1] ,需要额外声明如下这样一个 dataset :
},
{
// 这个 dataset 的 index 为 `2`。
// 这个额外的 dataset 指定了数据来源于 index 为 `1` 的 dataset。
fromDatasetIndex: 1,
// 并且指定了获取 transform result[1] 。
fromTransformResult: 1
}
],
xAxis: {
type: 'category'
},
yAxis: {},
series: [
{
name: 'boxplot',
type: 'boxplot',
// Reference the data from result[0].
// 这个 series 引用 index 为 `1` 的 dataset 。
datasetIndex: 1
},
{
name: 'outlier',
type: 'scatter',
// 这个 series 引用 index 为 `2` 的 dataset 。
// 从而也就得到了上述的 transform result[1] (即离群点数据)
datasetIndex: 2
}
]
};
另外,dataset.fromTransformResult 和 dataset.transform 能同时出现在一个 dataset 中,这表示,这个 transform 的输入,是上游的结果中以 fromTransformResult 获取的结果。
例如:
{
fromDatasetIndex: 1,
fromTransformResult: 1,
transform: {
type: 'sort',
config: { dimension: 2, order: 'desc' }
}
}
在开发环境中 debug
使用 transform 时,有时候我们会配不对,显示不出来结果,并且不知道哪里错了。
所以,这里提供了一个配置项 transform.print 方便 debug 。这个配置项只在开发环境中生效。
如下例:
option = {
dataset: [
{
source: []
},
{
transform: {
type: 'filter',
config: {},
// 配置为 `true` 后, transform 的结果
// 会被 console.log 打印出来。
print: true
}
}
]
// ...
};
数据转换器 “filter”
echarts 内置提供了能起过滤作用的数据转换器。
我们只需声明 transform.type: “filter”,以及给出数据筛选条件。
如下例:
option = {
dataset: [
{
source: [
['Product', 'Sales', 'Price', 'Year'],
['Cake', 123, 32, 2011],
['Latte', 231, 14, 2011],
['Tofu', 235, 5, 2011],
['Milk Tee', 341, 25, 2011],
['Porridge', 122, 29, 2011],
['Cake', 143, 30, 2012],
['Latte', 201, 19, 2012],
['Tofu', 255, 7, 2012],
['Milk Tee', 241, 27, 2012],
['Porridge', 102, 34, 2012],
['Cake', 153, 28, 2013],
['Latte', 181, 21, 2013],
['Tofu', 395, 4, 2013],
['Milk Tee', 281, 31, 2013],
['Porridge', 92, 39, 2013],
['Cake', 223, 29, 2014],
['Latte', 211, 17, 2014],
['Tofu', 345, 3, 2014],
['Milk Tee', 211, 35, 2014],
['Porridge', 72, 24, 2014]
]
},
{
transform: {
type: 'filter',
config: { dimension: 'Year', '=': 2011 }
// 这个筛选条件表示,遍历数据,筛选出维度( dimension )
// 'Year' 上值为 2011 的所有数据项。
}
}
],
series: {
type: 'pie',
datasetIndex: 1
}
};
在 “filter” transform 中,有这些要素:
关于维度( dimension ):
config.dimension 指定了维度,能设成这样的值:
设定成声明在 dataset 中的维度名,例如 config: { dimension: ‘Year’, ‘=’: 2011 }。
不过, dataset 中维度名的声明并非强制,所以我们也可以设定成 dataset 中的维度 index (index 值从 0 开始)例如 config: { dimension: 3, ‘=’: 2011 }。
关于关系比较操作符:
关系操作符,可以设定这些: >(gt)、>=(gte)、<(lt)、<=(lte)、=(eq)、!=(ne、<>)、reg。(小括号中的符号或名字,是别名,设置起来作用相同)。他们首先基本地能基于数值大小进行比较,然后也有些额外的功能特性:
多个关系操作符能声明在一个 {} 中,例如 { dimension: ‘Price’, ‘>=’: 20, ‘<’: 30 }。这表示“与”的关系,即,筛选出价格大于等于 20 小雨 30 的数据项。 data 里的值,不仅可以是数值( number ),也可以是“类数值的字符串”(“ numeric string ”)。“类数值的字符串”本身是一个字符串,但是可以被转换为字面所描述的数值,例如 ‘ 123 ‘。转换过程中,空格(全角半角空格)和换行符都能被消除( trim )。
如果我们需要对日期对象(JS Date)或者日期字符串(如 ‘2012-05-12’)进行比较,我们需要手动指定 parser: ‘time’,例如 config: { dimension: 3, lt: ‘2012-05-12’, parser: ‘time’ }。
纯字符串比较也被支持,但是只能用在 = 或 != 上。而 >, >=, <, <= 并不支持纯字符串比较,也就是说,这四个操作符的右值,不能是字符串。
reg 操作符能提供正则表达式比较。例如, { dimension: ‘Name’, reg: /\s+Müller\s*$/ } 能在 ‘Name’ 维度上选出姓 ‘Müller’ 的数据项。
关于逻辑比较:
我们也支持了逻辑比较操作符 与或非( and | or | not ): |
option = {
dataset: [
{
source: [
// ...
]
},
{
transform: {
type: 'filter',
config: {
// 使用 and 操作符。
// 类似地,同样的位置也可以使用 “or” 或 “not”。
// 但是注意 “not” 后应该跟一个 {...} 而非 [...] 。
and: [
{ dimension: 'Year', '=': 2011 },
{ dimension: 'Price', '>=': 20, '<': 30 }
]
}
// 这个表达的是,选出 2011 年价格大于等于 20 但小于 30 的数据项。
}
}
],
series: {
type: 'pie',
datasetIndex: 1
}
};
and/or/not 自然可以被嵌套,例如:
transform: {
type: 'filter',
config: {
or: [{
and: [{
dimension: 'Price', '>=': 10, '<': 20
}, {
dimension: 'Sales', '<': 100
}, {
not: { dimension: 'Product', '=': 'Tofu' }
}]
}, {
and: [{
dimension: 'Price', '>=': 10, '<': 20
}, {
dimension: 'Sales', '<': 100
}, {
not: { dimension: 'Product', '=': 'Cake' }
}]
}]
}
}
关于解析器( parser ):
还可以指定“解析器”( parser )来对值进行解析后再做比较。现在支持的解析器有:
parser: ‘time’:把原始值解析成时间戳( timestamp )后再做比较。这个解析器的行为,和 echarts.time.parse 相同,即,当原始值为时间对象( JS Date 实例),或者是时间戳,或者是描述时间的字符串(例如 ‘2012-05-12 03:11:22’ ),都可以被解析为时间戳,然后就可以基于数值大小进行比较。如果原始数据是其他不可解析为时间戳的值,那么会被解析为 NaN。
parser: ‘trim’:如果原始数据是字符串,则把字符串两端的空格(全角半角)和换行符去掉。如果不是字符串,还保持为原始数据。
parser: ‘number’:强制把原始数据转成数值。如果不能转成有意义的数值,那么转成 NaN。在大多数场景下,我们并不需要这个解析器,因为按默认策略,“像数值的字符串”就会被转成数值。但是默认策略比较严格,这个解析器比较宽松,如果我们遇到含有尾缀的字符串(例如 ‘33%’, 12px),我们需要手动指定 parser: ‘number’,从而去掉尾缀转为数值才能比较。
这个例子显示了如何使用 parser: ‘time’:
option = {
dataset: [
{
source: [
['Product', 'Sales', 'Price', 'Date'],
['Milk Tee', 311, 21, '2012-05-12'],
['Cake', 135, 28, '2012-05-22'],
['Latte', 262, 36, '2012-06-02'],
['Milk Tee', 359, 21, '2012-06-22'],
['Cake', 121, 28, '2012-07-02'],
['Latte', 271, 36, '2012-06-22']
// ...
]
},
{
transform: {
type: 'filter',
config: {
dimension: 'Date',
'>=': '2012-05',
'<': '2012-06',
parser: 'time'
}
}
}
]
};
形式化定义:
最后,我们给出,数据转换器 “filter” 的 config 的形式化定义:
type FilterTransform = {
type: 'filter';
config: ConditionalExpressionOption;
};
type ConditionalExpressionOption =
| true
| false
| RelationalExpressionOption
| LogicalExpressionOption;
type RelationalExpressionOption = {
dimension: DimensionName | DimensionIndex;
parser?: 'time' | 'trim' | 'number';
lt?: DataValue; // less than
lte?: DataValue; // less than or equal
gt?: DataValue; // greater than
gte?: DataValue; // greater than or equal
eq?: DataValue; // equal
ne?: DataValue; // not equal
'<'?: DataValue; // lt
'<='?: DataValue; // lte
'>'?: DataValue; // gt
'>='?: DataValue; // gte
'='?: DataValue; // eq
'!='?: DataValue; // ne
'<>'?: DataValue; // ne (SQL style)
reg?: RegExp | string; // RegExp
};
type LogicalExpressionOption = {
and?: ConditionalExpressionOption[];
or?: ConditionalExpressionOption[];
not?: ConditionalExpressionOption;
};
type DataValue = string | number | Date;
type DimensionName = string;
type DimensionIndex = number;
注意:使用按需引入接口时,如果需要使用该内置转换器,除了 Dataset 组件,还需引入 Transform 组件。
import {
DatasetComponent,
TransformComponent
} from 'echarts/components';
echarts.use([
DatasetComponent,
TransformComponent
]);
数据转换器 “sort”
“sort” 是另一个内置的数据转换器,用于排序数据。
目前主要能用于在类目轴( axis.type: ‘category’ )中显示排过序的数据。
例如:
option = {
dataset: [
{
dimensions: ['name', 'age', 'profession', 'score', 'date'],
source: [
[' Hannah Krause ', 41, 'Engineer', 314, '2011-02-12'],
['Zhao Qian ', 20, 'Teacher', 351, '2011-03-01'],
[' Jasmin Krause ', 52, 'Musician', 287, '2011-02-14'],
['Li Lei', 37, 'Teacher', 219, '2011-02-18'],
[' Karle Neumann ', 25, 'Engineer', 253, '2011-04-02'],
[' Adrian Groß', 19, 'Teacher', null, '2011-01-16'],
['Mia Neumann', 71, 'Engineer', 165, '2011-03-19'],
[' Böhm Fuchs', 36, 'Musician', 318, '2011-02-24'],
['Han Meimei ', 67, 'Engineer', 366, '2011-03-12']
]
},
{
transform: {
type: 'sort',
// 按分数排序
config: { dimension: 'score', order: 'asc' }
}
}
],
series: {
type: 'bar',
datasetIndex: 1
}
// ...
};
数据转换器 “sort” 还有一些额外的功能:
多维度排序
可以多重排序,多个维度一起排序。
见下面的例子。
排序规则是这样的:
默认按照数值大小排序。其中,“可转为数值的字符串”也被转换成数值,和其他数值一起按大小排序。
对于其他“不能转为数值的字符串”,也能在它们之间按字符串进行排序。这个特性有助于这种场景:把相同标签的数据项排到一起,尤其是当多个维度共同排序时。见下面的例子。
当“数值及可转为数值的字符串”和“不能转为数值的字符串”进行排序时,或者它们和“其他类型的值”进行比较时,它们本身是不知如何进行比较的。那么我们称呼“后者”为“incomparable”,并且可以设置 incomparable: ‘min’ | ‘max’ 来指定一个“incomparable”在这个比较中是最大还是最小,从而能使它们能产生比较结果。这个设定的用途,比如可以是,决定空值(例如 null, undefined, NaN, ‘’, ‘-‘)在排序的头还是尾。 |
过滤器 filter: ‘time’ | ‘trim’ | ‘number’ 可以被使用,和数据转换器 “filter” 中的情况一样。 |
如果要对时间进行排序(例如,值为 JS Date 实例或者时间字符串如 ‘2012-03-12 11:13:54’),我们需要声明 parser: ‘time’。
如果需要对有后缀的数值进行排序(如 ‘33%’, ‘16px’)我们需要声明 parser: ‘number’。
这是一个“多维度排序”的例子。
option = {
dataset: [
{
dimensions: ['name', 'age', 'profession', 'score', 'date'],
source: [
[' Hannah Krause ', 41, 'Engineer', 314, '2011-02-12'],
['Zhao Qian ', 20, 'Teacher', 351, '2011-03-01'],
[' Jasmin Krause ', 52, 'Musician', 287, '2011-02-14'],
['Li Lei', 37, 'Teacher', 219, '2011-02-18'],
[' Karle Neumann ', 25, 'Engineer', 253, '2011-04-02'],
[' Adrian Groß', 19, 'Teacher', null, '2011-01-16'],
['Mia Neumann', 71, 'Engineer', 165, '2011-03-19'],
[' Böhm Fuchs', 36, 'Musician', 318, '2011-02-24'],
['Han Meimei ', 67, 'Engineer', 366, '2011-03-12']
]
},
{
transform: {
type: 'sort',
config: [
// 对两个维度按声明的优先级分别排序。
{ dimension: 'profession', order: 'desc' },
{ dimension: 'score', order: 'desc' }
]
}
}
],
series: {
type: 'bar',
datasetIndex: 1
}
//...
};
最后,我们给出数据转换器 “sort” 的 config 的形式化定义。
type SortTransform = {
type: 'filter';
config: OrderExpression | OrderExpression[];
};
type OrderExpression = {
dimension: DimensionName | DimensionIndex;
order: 'asc' | 'desc';
incomparable?: 'min' | 'max';
parser?: 'time' | 'trim' | 'number';
};
type DimensionName = string;
type DimensionIndex = number;
注意:使用按需引入接口时,如果需要使用该内置转换器,除了 Dataset 组件,还需引入 Transform 组件。
import {
DatasetComponent,
TransformComponent
} from 'echarts/components';
echarts.use([
DatasetComponent,
TransformComponent
]);
使用外部的数据转换器
除了上述的内置的数据转换器外,我们也可以使用外部的数据转换器。外部数据转换器能提供或自己定制更丰富的功能。
下面的例子中,我们使用第三方库 ecStat 提供的数据转换器。
生成数据的回归线:
参考资料
https://echarts.apache.org/handbook/zh/concepts/data-transform