背景

Kafka 实战(一)kafka 入门介绍

Kafka 实战(二)kafka 入门介绍

安装好了 kafka,于是想使用 springboot 整合一把。

便于以后使用翻阅。

快速开始

maven 引入

  [xml]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <artifactId>springboot-learn-kafka</artifactId> <properties> <java.version>1.8</java.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> </properties> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.0.6.RELEASE</version> <relativePath/> <!-- lookup parent from repository --> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- kafka --> <dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency> </dependencies> </project>

application.yml

  [yml]
1
2
3
4
5
6
7
8
spring: kafka: bootstrap-servers: localhost:9092 consumer: group-id: default server: port: 8081

生产者

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import org.springframework.beans.factory.annotation.Autowired; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.stereotype.Component; /** * @author binbin.hou * @since 1.0.0 */ @Component public class KafkaProducer { @Autowired private KafkaTemplate kafkaTemplate; public void sendMsg() { System.out.println("============= kafka 发送消息"); kafkaTemplate.send("test", "info"); } }

消费者

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import org.springframework.kafka.annotation.KafkaListener; import org.springframework.stereotype.Component; /** * @author binbin.hou * @since 1.0.0 */ @Component public class KafkaConsumer { @KafkaListener(topics = "test", groupId = "default") public void consumer(String msg) { System.out.println("============= kafka 消费消息 " + msg); } }

启动类

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import com.github.houbb.springboot.learn.kafka.service.KafkaProducer; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import javax.annotation.PostConstruct; /** * @author binbin.hou * @since 1.0.0 */ @SpringBootApplication public class KafkaApplication { @Autowired private KafkaProducer kafkaProducer; @PostConstruct public void init() { kafkaProducer.sendMsg(); } public static void main(String[] args) { SpringApplication.run(KafkaApplication.class, args); } }

我们让启动的时候,触发一次消息的发送

  • 日志
  [plaintext]
1
2
============= kafka 发送消息 ============= kafka 消费消息

哦了,就是这么简单粗暴。

进阶版配置

整体配置

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringDeserializer; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory; import org.springframework.kafka.config.KafkaListenerContainerFactory; import org.springframework.kafka.core.*; import org.springframework.kafka.listener.ConcurrentMessageListenerContainer; import java.util.HashMap; import java.util.Map; /** * kafka 配置信息 * * @author binbin.hou */ @EnableKafka @Configuration public class KafkaConfig { /** * 启动服务集群 */ @Value("${kafka.bootstrap.servers}") private String bootstrapServers; /** * 消费者组ID */ @Value("${kafka.consumer.groupId}") private String consumerGroupId; @Autowired private KafkaProducerListener kafkaProducerListener; @Bean KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(kafkaConsumerFactory()); factory.setConcurrency(3); factory.getContainerProperties().setPollTimeout(3000); return factory; } @Bean public ConsumerFactory<String, String> kafkaConsumerFactory() { return new DefaultKafkaConsumerFactory<>(kafkaConsumerProperties()); } @Bean public Map<String, Object> kafkaConsumerProperties() { Map<String, Object> props = new HashMap<>(4); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ConsumerConfig.GROUP_ID_CONFIG, consumerGroupId); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); return props; } @Bean public ProducerFactory<String, String> kafkaProducerFactory() { return new DefaultKafkaProducerFactory<>(kafkaProducerProperties()); } @Bean public Map<String, Object> kafkaProducerProperties() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); // 后续可以调整为可配置 props.put(ProducerConfig.RETRIES_CONFIG, 3); props.put(ProducerConfig.ACKS_CONFIG, "all"); //producer将试图批处理消息记录,以减少请求次数。这将改善client与server之间的性能。这项配置控制默认的批量处理消息字节数。 props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384); //producer组将会汇总任何在请求与发送之间到达的消息记录一个单独批量的请求,1秒延迟 props.put(ProducerConfig.LINGER_MS_CONFIG, 1); //producer可以用来缓存数据的内存大小 // props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432); //每次尝试增加的额外的间隔时间 props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300); return props; } @Bean public KafkaTemplate<String, String> kafkaTemplate() { KafkaTemplate<String, String> kafkaTemplate = new KafkaTemplate<>(kafkaProducerFactory(), true); kafkaTemplate.setDefaultTopic("default"); kafkaTemplate.setProducerListener(kafkaProducerListener); return kafkaTemplate; } }

生产者的监听类

实际上 kafka 发送应该是异步的,所以发送成功与否,我们都是不知道的,这里需要实现一个监听类:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import org.apache.kafka.clients.producer.RecordMetadata; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.kafka.support.ProducerListener; import org.springframework.stereotype.Component; /** * @author binbin.hou */ @Component public class KafkaProducerListener implements ProducerListener<String, String> { private static final Logger LOG = LoggerFactory.getLogger(KafkaProducerListener.class); @Override public void onSuccess(String topic, Integer partition, String key, String value, RecordMetadata recordMetadata) { LOG.info("[Kafka] send success, topic: {}, value: {}", topic, value); } @Override public void onError(String topic, Integer partition, String key, String value, Exception e) { LOG.error("[Kafka] send fail, topic: {}, value: {}", topic, value, e); } /** * 方法返回值代表是否启动kafkaProducer监听器 */ @Override public boolean isInterestedInSuccess() { LOG.info("kafkaProducer监听器启动:KafkaProducerListener "); return true; } }

监听类

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.kafka.annotation.KafkaListener; import org.springframework.stereotype.Component; /** * kafka 消费者 * @author binbin.hou */ @Component public class KafkaConsumer { private static final Logger LOG = LoggerFactory.getLogger(KafkaConsumer.class); /** * 消费者 * @param message 消息体 */ @KafkaListener(topics = "${kafka.consumer.topicId}", group = "${kafka.consumer.groupId}") public void consumer(String message) { //处理逻辑... } }

小结

本文主要讲解了如何让 kafka 与 spring 进行整合。

后续将对生产者和消费者进行深入讲解。

拓展阅读

windows 安装 kafka

docker 安装 kafka

spring kafka

springboot 整合 kafka

参考资料

SpringBoot整合kafka

Springboot2整合kafka的两种使用方式