neo4j apoc 系列

Neo4j APOC-01-图数据库 apoc 插件介绍

Neo4j APOC-01-图数据库 apoc 插件安装 neo4j on windows10

Neo4j APOC-03-图数据库 apoc 实战使用使用

Neo4j APOC-04-图数据库 apoc 实战使用使用 apoc.path.spanningTree 最小生成树

Neo4j APOC-05-图数据库 apoc 实战使用使用 labelFilter

Neo4j GDS-01-graph-data-science 图数据科学插件库概览

Neo4j GDS-02-graph-data-science 插件库安装实战笔记

Neo4j GDS-03-graph-data-science 简单聊一聊图数据科学插件库

Neo4j GDS-04-图的中心性分析介绍

Neo4j GDS-05-neo4j中的中心性分析算法

实际测试

数据初始化

i_app 节点,i_app 指向 i_vm,i_phy。

i_app 有 name 属性。

i_vm, i_phy 有 ip 属性。

创建 4 个 i_app 节点,分别指向 4 个 i_vm。2个 i_vm 一组,分别指向 i_phy 节点。

给出 cypher 初始化语句

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
12
13
CREATE (phy1:i_phy {ip: '192.168.1.1'}), (phy2:i_phy {ip: '192.168.1.2'}), (vm1:i_vm {ip: '10.0.0.1'})-[:BELONGS_TO]->(phy1), (vm2:i_vm {ip: '10.0.0.2'})-[:BELONGS_TO]->(phy1), (vm3:i_vm {ip: '10.0.0.3'})-[:BELONGS_TO]->(phy2), (vm4:i_vm {ip: '10.0.0.4'})-[:BELONGS_TO]->(phy2), (app1:i_app {name: 'app1'})-[:POINTS_TO]->(vm1), (app2:i_app {name: 'app2'})-[:POINTS_TO]->(vm2), (app3:i_app {name: 'app3'})-[:POINTS_TO]->(vm3), (app4:i_app {name: 'app4'})-[:POINTS_TO]->(vm4);

目标

希望达到的效果:

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
12
13
neo4j 中。如何实现一个从 i_app 节点,且 i_app 的 AppName 属性 在指定的列表中,比如 ['app1'],从 i_app 作为 start,i_vm 或者 i_phy 作为终止节点,最大2层。 任意关系。对应的图投影语句怎么写?我最终的目的是创建投影之后,通过 pageRank 找到关联节点比较多的元素返回。 所以你帮我拆分为3步: 1. apoc 找到符合条件的节点+关系 2. gds 创建图投影 3. gds pageRank 找到score 比较高的元素 Top9 返回。 先给我拆分具体的每一步的 cypher 语句,然后给出 java 实现.

实现代码

第一个版本

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
package org.example; import org.neo4j.driver.*; import java.util.Arrays; import java.util.List; public class PageRankService implements AutoCloseable { private final Driver driver; // 初始化Driver(建议使用连接池) public PageRankService(String uri, String user, String password) { driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password)); } // 主业务方法(appNames为动态参数) public List<Record> calculateTopPageRankNodes(List<String> appNames) { try (Session session = driver.session()) { // 步骤1:创建Cypher投影 createGraphProjection(session, appNames); // 步骤2:执行PageRank算法 return session.writeTransaction(tx -> { Result result = tx.run( "CALL gds.pageRank.stream('myGraph') " + "YIELD nodeId, score " + "RETURN gds.util.asNode(nodeId) AS node, score " + "ORDER BY score DESC LIMIT 9"); // 删除 tx.run("CALL gds.graph.drop('myGraph')"); return result.list(); }); } } // 创建动态图投影(私有方法封装) private void createGraphProjection(Session session, List<String> appNames) { String nodeQuery = "MATCH (start:i_app) WHERE start.name IN $appNames " + "CALL apoc.path.expandConfig(start, { " + " relationshipFilter: '>', " + " labelFilter: '/i_phy', " + " minLevel: 1, " + " maxLevel: 2, " + " uniqueness: 'NODE_GLOBAL' " + "}) YIELD path " + "UNWIND nodes(path) AS node " + "RETURN DISTINCT id(node) AS id, labels(node) AS labels"; String relQuery = "MATCH (start:i_app) WHERE start.name IN $appNames " + "CALL apoc.path.expandConfig(start, { " + " relationshipFilter: '>', " + " labelFilter: '/i_phy', " + " minLevel: 1, " + " maxLevel: 2, " + " uniqueness: 'NODE_GLOBAL' " + "}) YIELD path " + "UNWIND relationships(path) AS rel " + "RETURN DISTINCT id(startNode(rel)) AS source, " + "id(endNode(rel)) AS target, type(rel) AS type"; // 执行Cypher投影(带参数) session.run( "CALL gds.graph.create.cypher($graphName, $nodeQuery, $relQuery, {parameters: {appNames: $appNames}})", Values.parameters( "graphName", "myGraph", "nodeQuery", nodeQuery, "relQuery", relQuery, "appNames", appNames ) ).consume(); // 显式消费结果确保执行 } @Override public void close() throws Exception { driver.close(); } // 示例用法 public static void main(String[] args) { try (PageRankService service = new PageRankService("bolt://[::1]:17687", "neo4j", "12345678")) { List<String> appNameList = Arrays.asList("app1", "app2", "app3", "app4"); List<Record> topNodes = service.calculateTopPageRankNodes(appNameList); topNodes.forEach(record -> System.out.println(record.get("node").asNode() + " Score: " + record.get("score"))); } catch (Exception e) { throw new RuntimeException(e); } } }

执行异常

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
Exception in thread "main" java.lang.RuntimeException: org.neo4j.driver.exceptions.ClientException: There is no procedure with the name `gds.graph.create.cypher` registered for this database instance. Please ensure you've spelled the procedure name correctly and that the procedure is properly deployed. at org.example.PageRankService.main(PageRankService.java:93) Caused by: org.neo4j.driver.exceptions.ClientException: There is no procedure with the name `gds.graph.create.cypher` registered for this database instance. Please ensure you've spelled the procedure name correctly and that the procedure is properly deployed. at org.neo4j.driver.internal.util.Futures.blockingGet(Futures.java:111) at org.neo4j.driver.internal.InternalSession.run(InternalSession.java:62) at org.neo4j.driver.internal.InternalSession.run(InternalSession.java:47) at org.neo4j.driver.internal.AbstractQueryRunner.run(AbstractQueryRunner.java:34) at org.example.PageRankService.createGraphProjection(PageRankService.java:69) at org.example.PageRankService.calculateTopPageRankNodes(PageRankService.java:22) at org.example.PageRankService.main(PageRankService.java:89) Suppressed: org.neo4j.driver.internal.util.ErrorUtil$InternalExceptionCause

修正

首先确认当前 GDS 的方法到底是什么?

这个应该是版本问题,这个版本中的 2.5.3 方法是 gds.graph.project.cypher

我当时测试另一个版本 1.8.8 确实是 gds.graph.create.cypher

PS: 当初自己怎么安装了一个这么老的版本。

  [plaintext]
1
2
3
4
CALL gds.list() YIELD name, description WHERE name contains 'graph' RETURN name, description

结果:

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
╒═══════════════════════════════════════════════╤══════════════════════════════════════════════════════════════════════╕ │name │description │ ╞═══════════════════════════════════════════════╪══════════════════════════════════════════════════════════════════════╡ ... ├───────────────────────────────────────────────┼──────────────────────────────────────────────────────────────────────┤ │"gds.graph.project" │"Creates a named graph in the catalog for use by algorithms." │ ├───────────────────────────────────────────────┼──────────────────────────────────────────────────────────────────────┤ │"gds.graph.project.cypher" │"Creates a named graph in the catalog for use by algorithms." │ ├───────────────────────────────────────────────┼──────────────────────────────────────────────────────────────────────┤ ... └───────────────────────────────────────────────┴──────────────────────────────────────────────────────────────────────┘

参数

  [plaintext]
1
2
3
4
CALL gds.list() YIELD name, description, signature WHERE name contains 'gds.graph.project.cypher' RETURN name, description, signature

如下:

  [plaintext]
1
2
3
4
5
6
7
8
9
╒═══════════════════════════════════╤═════════════════════════════════════════════════════════════════════╤══════════════════════════════════════════════════════════════════════╕ │name │description │signature │ ╞═══════════════════════════════════╪═════════════════════════════════════════════════════════════════════╪══════════════════════════════════════════════════════════════════════╡ │"gds.graph.project.cypher" │"Creates a named graph in the catalog for use by algorithms." │"gds.graph.project.cypher(graphName :: STRING?, nodeQuery :: STRING?, │ │ │ │relationshipQuery :: STRING?, configuration = {} :: MAP?) :: (nodeQuer│ │ │ │y :: STRING?, relationshipQuery :: STRING?, graphName :: STRING?, node│ │ │ │Count :: INTEGER?, relationshipCount :: INTEGER?, projectMillis :: INT│ │ │ │EGER?)" │ ├───────────────────────────────────┼─────────────────────────────────────────────────────────────────────┼──────────────────────────────────────────────────────────────

API 为:

  [java]
1
2
3
4
5
6
CALL gds.graph.project.cypher( graphName: String, nodeQuery: String, relationshipQuery: String, configuration: Map )

再次执行

修正为当前版本的方法名。

  [java]
1
2
3
4
5
6
7
8
9
session.run( "CALL gds.graph.project.cypher($graphName, $nodeQuery, $relQuery, {parameters: {appNames: $appNames}})", Values.parameters( "graphName", "myGraph", "nodeQuery", nodeQuery, "relQuery", relQuery, "appNames", appNames ) ).consume(); // 显式消费结果确保执行

结果如下:

  [plaintext]
1
2
3
4
5
6
7
8
9
node<0> Score: 0.62175 node<1> Score: 0.62175 node<4> Score: 0.2775 node<3> Score: 0.2775 node<5> Score: 0.2775 node<2> Score: 0.2775 node<8> Score: 0.15000000000000002 node<9> Score: 0.15000000000000002 node<7> Score: 0.15000000000000002

发现如果匹配的数据为空,实际上会报错如下:

  [plaintext]
1
2
3
4
5
6
7
8
9
Exception in thread "main" java.lang.RuntimeException: org.neo4j.driver.exceptions.ClientException: Failed to invoke procedure `gds.graph.project.cypher`: Caused by: java.lang.IllegalArgumentException: Node-Query returned no nodes at org.example.PageRankService.main(PageRankService.java:91) Caused by: org.neo4j.driver.exceptions.ClientException: Failed to invoke procedure `gds.graph.project.cypher`: Caused by: java.lang.IllegalArgumentException: Node-Query returned no nodes at org.neo4j.driver.internal.util.Futures.blockingGet(Futures.java:111) at org.neo4j.driver.internal.InternalResult.blockingGet(InternalResult.java:107) at org.neo4j.driver.internal.InternalResult.consume(InternalResult.java:98) at org.example.PageRankService.createGraphProjection(PageRankService.java:75) at org.example.PageRankService.calculateTopPageRankNodes(PageRankService.java:20) at org.example.PageRankService.main(PageRankService.java:87)

节点本身的基本信息

NodeInfo 基本信息:

  [java]
1
2
3
4
5
6
7
8
9
public class NodeInfo { private Long nodeId; private List<String> labels; private Map<String, Object> properties; //get/set/toString }

核心方法:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public List<NodeInfo> getNodeInfo(List<Long> nodeIds) { Session session = driver.session(); String cypherQuery = "MATCH (n) " + "WHERE id(n) IN $nodeIds " + "RETURN id(n) AS nodeId, labels(n) AS labels, properties(n) AS properties"; List<NodeInfo> nodeInfoList = new ArrayList<>(); session.readTransaction(tx -> { Result result = tx.run(cypherQuery, Values.parameters("nodeIds", nodeIds)); while (result.hasNext()) { Record record = result.next(); NodeInfo info = new NodeInfo(); info.setNodeId(record.get("nodeId").asLong()); info.setLabels(record.get("labels").asList(Value::asString)); info.setProperties(record.get("properties").asMap(Value::asObject)); nodeInfoList.add(info); } return null; }); return nodeInfoList; }

测试效果:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public static void main(String[] args) { try (PageRankService_V2_5_3 service = new PageRankService_V2_5_3("bolt://[::1]:17687", "neo4j", "12345678")) { List<String> appNameList = Arrays.asList("app1", "app2", "app3", "app4"); List<Record> topNodes = service.calculateTopPageRankNodes(appNameList); topNodes.forEach(record -> System.out.println(record.get("node").asNode() + " Score: " + record.get("score"))); // 结果处理 List<Long> nodeIdList = topNodes.stream().map(new Function<Record, Long>() { @Override public Long apply(Record record) { return record.get("node").asNode().id(); } }).collect(Collectors.toList()); List<NodeInfo> nodeInfoList = service.getNodeInfo(nodeIdList); nodeInfoList.forEach(System.out::println); } catch (Exception e) { throw new RuntimeException(e); } }

输出如下:

  [plaintext]
1
2
3
4
5
6
7
8
9
NodeInfo{nodeId=0, labels=[i_phy], properties={ip=192.168.1.1}} NodeInfo{nodeId=1, labels=[i_phy], properties={ip=192.168.1.2}} NodeInfo{nodeId=2, labels=[i_vm], properties={ip=10.0.0.1}} NodeInfo{nodeId=3, labels=[i_vm], properties={ip=10.0.0.2}} NodeInfo{nodeId=4, labels=[i_vm], properties={ip=10.0.0.3}} NodeInfo{nodeId=5, labels=[i_vm], properties={ip=10.0.0.4}} NodeInfo{nodeId=7, labels=[i_app], properties={name=app2}} NodeInfo{nodeId=8, labels=[i_app], properties={name=app3}} NodeInfo{nodeId=9, labels=[i_app], properties={name=app4}}

查询对应的数据

我们可以直接查询对应的数据效果

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
MATCH (start:i_app) WHERE start.name IN ['app1', 'app2', 'app3', 'app4'] CALL apoc.path.expandConfig (start, { relationshipFilter: '>', labelFilter: '/i_phy', minLevel: 1, maxLevel: 2, uniqueness: 'NODE_GLOBAL' } ) YIELD path with path, nodes(path) as all_nodes UNWIND all_nodes as node with path, all_nodes, node where id(node) in [0] with path, all_nodes return distinct relationships(path) as all_relationships, all_nodes

效果如下:

Neo4j Graph VisualizationCreated using Neo4j (http://www.neo4j.com/)POINTS_TOBELONGS_TOPOINTS_TOBELONGS_TO app1 10.0.0.1 192.168.… app2 10.0.0.2

chat

目标场景

希望达到的效果:

  [plaintext]
1
2
3
如何实现一个从 i_app 节点,且 i_app 的 AppName 属性 在指定的列表中,比如 ['my-web'],从 i_app 作为 start,i_vm 或者 i_phy 作为终止节点,最大2层。任意关系。 对应的图投影语句怎么写?结合 apoc 的方式来实现

实现

分步实现说明

步骤1:使用APOC找到符合条件的节点和关系

通过apoc.path.expandConfig动态获取起始节点为i_app(AppName在指定列表),终止节点为i_vmi_phy,最大深度为2的路径。此步骤直接嵌入到后续的图投影中,无需单独存储中间结果。

  [cypher]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// 步骤1和步骤2合并:动态获取子图并创建投影 CALL gds.graph.project.cypher( 'myGraph', // 节点查询:收集所有路径中的节点(包括i_app、中间节点、i_vm/i_phy) 'MATCH (start:i_app) WHERE start.name IN $appNames CALL apoc.path.expandConfig(start, { relationshipFilter: ">", // 允许所有关系类型和方向 labelFilter: ">i_vm|i_phy", // 终止节点必须是i_vm或i_phy minLevel: 1, // 最小深度1(避免仅包含i_app) maxLevel: 2, // 最大深度2 uniqueness: "NODE_GLOBAL" // 节点全局唯一,避免重复遍历 }) YIELD path UNWIND nodes(path) AS node RETURN DISTINCT id(node) AS id, labels(node) AS labels', // 关系查询:收集所有路径中的关系 'MATCH (start:i_app) WHERE start.name IN $appNames CALL apoc.path.expandConfig(start, { relationshipFilter: ">", labelFilter: ">i_vm|i_phy", minLevel: 1, maxLevel: 2, uniqueness: "NODE_GLOBAL" }) YIELD path UNWIND relationships(path) AS rel RETURN DISTINCT id(startNode(rel)) AS source, id(endNode(rel)) AS target, type(rel) AS type', { parameters: { appNames: ['my-web'] } } // 指定应用名列表 ) YIELD graphName, nodeCount, relationshipCount; // 返回投影信息

关键点解析

  • 路径过滤逻辑:通过labelFilter: ">i_vm|i_phy"确保路径末端节点为目标类型,minLevel:1排除仅包含起始节点的情况。
  • 性能优化uniqueness: "NODE_GLOBAL"减少重复遍历。

步骤2:创建GDS图投影

使用Cypher投影方式动态构建子图,仅包含步骤1筛选出的节点和关系。此方法无需预先定义标签或关系类型,适合动态场景。

  [cypher]
1
// (已合并到步骤1的代码中)

参数说明

  • 节点投影:返回所有路径节点的ID及标签。
  • 关系投影:返回所有路径关系的起点、终点及类型。
  • 动态性优势:无需预先知道涉及的标签或关系类型,直接通过路径扩展动态捕获。

步骤3:运行PageRank算法并返回Top9结果

对投影后的图执行PageRank算法,按得分降序取前9名节点。

  [cypher]
1
2
3
4
5
6
// 步骤3:执行PageRank并返回高影响力节点 CALL gds.pageRank.stream('myGraph') YIELD nodeId, score RETURN gds.util.asNode(nodeId) AS node, score // 将节点ID转换为实际节点对象 ORDER BY score DESC LIMIT 9;

算法配置

  • 默认参数:阻尼系数为0.85,迭代次数为20(未显式指定时使用默认值)。
  • 结果解释:PageRank分数反映节点在图中的连接重要性,高分节点通常是关键枢纽。

完整代码整合

  [cypher]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// 步骤1+2:动态创建子图投影 CALL gds.graph.project.cypher( 'myGraph', 'MATCH (start:i_app) WHERE start.name IN $appNames CALL apoc.path.expandConfig(start, { relationshipFilter: ">", labelFilter: ">i_vm|i_phy", minLevel: 1, maxLevel: 2, uniqueness: "NODE_GLOBAL" }) YIELD path UNWIND nodes(path) AS node RETURN DISTINCT id(node) AS id, labels(node) AS labels', 'MATCH (start:i_app) WHERE start.name IN $appNames CALL apoc.path.expandConfig(start, { relationshipFilter: ">", labelFilter: ">i_vm|i_phy", minLevel: 1, maxLevel: 2, uniqueness: "NODE_GLOBAL" }) YIELD path UNWIND relationships(path) AS rel RETURN DISTINCT id(startNode(rel)) AS source, id(endNode(rel)) AS target, type(rel) AS type', { parameters: { appNames: ['app1'] } } ) YIELD graphName, nodeCount, relationshipCount; // 步骤3:PageRank计算 CALL gds.pageRank.stream('myGraph') YIELD nodeId, score RETURN gds.util.asNode(nodeId) AS node, score ORDER BY score DESC LIMIT 9;

常见问题及优化建议

  1. 性能问题
    • 路径深度限制:最大深度设为2层,避免大规模图遍历。
    • 索引优化:为i_app节点的AppName属性创建索引,加速起始节点查询。
        [cypher]
      1
      CREATE INDEX FOR (n:i_app) ON (n.name);
  2. 结果准确性
    • 终止节点验证:通过labelFilter确保终止节点类型正确,避免无关节点混入。
    • 权重调整:若需考虑关系权重,可在关系查询中返回weight属性,并在PageRank配置中添加relationshipWeightProperty参数。
  3. 扩展性
    • 动态参数:将appNames设为变量,便于灵活调整目标应用。
    • 多算法对比:可尝试其他中心性算法(如Betweenness)验证结果一致性。

graph.cypher 参数说明

全面解析 gds.graph.project.cypher 方法的参数及核心逻辑

gds.graph.project.cypher 是 Neo4j Graph Data Science(GDS)库中用于动态构建内存图投影的核心方法,其参数设计直接决定了图的筛选逻辑、属性和性能表现。以下从参数结构、使用规范到实践策略进行深度剖析:


一、参数构成与语法规范

参数名 是否必选 数据类型 描述 资料引用
graphName String 内存图投影的唯一标识名,用于后续算法调用  
nodeQuery String 定义节点筛选逻辑的Cypher查询,需返回 id 列(节点ID)和可选的 labels(标签)列  
relationshipQuery String 定义关系筛选逻辑的Cypher查询,需返回 source(起点)、target(终点)列  
configuration Map 控制内存分配、并发等高级参数(如 readConcurrencyparameters 动态传参)  

语法原型

  [cypher]
1
2
3
4
5
6
CALL gds.graph.project.cypher( graphName: String, nodeQuery: String, relationshipQuery: String, configuration: Map ) YIELD graphName, nodeCount, relationshipCount

二、核心参数详解

1. nodeQuery(节点查询)
  • 必选字段id(节点ID)
  • 可选字段labels(节点标签)、自定义属性(如 n.age AS age
  • 作用:通过Cypher查询动态筛选参与图计算的节点集合
  • 示例
      [cypher]
    1
    2
    // 筛选年龄小于30且标签为Person的节点,携带属性 'MATCH (n:Person) WHERE n.age < 30 RETURN id(n) AS id, labels(n) AS labels, n.age AS age'
  • 特殊场景
    • 虚拟节点:通过 UNWIND 生成虚拟节点(如 RETURN 0 AS id
    • 动态传参:通过 $param 语法注入外部参数(如 WHERE n.name = $name
2. relationshipQuery(关系查询)
  • 必选字段source(起点ID)、target(终点ID)
  • 可选字段type(关系类型)、自定义属性(如 r.weight AS weight
  • 作用:定义节点间的连接关系及属性,支持聚合逻辑(如 COUNT(*) AS count
  • 示例
      [cypher]
    1
    2
    3
    4
    5
    // 筛选KNOWS类型关系,聚合重复边并计算权重总和 'MATCH (a)-[r:KNOWS]->(b) RETURN id(a) AS source, id(b) AS target, SUM(r.weight) AS totalWeight, "KNOWS" AS type'
  • 高级特性
    • 关系去重:使用 DISTINCTCOUNT() 处理平行边
    • 方向控制:通过 [:REL_TYPE] 或反向查询实现关系方向调整
3. configuration(配置参数)
  • 关键子参数

    参数名 作用 默认值
    parameters 向查询中注入动态参数(如列表过滤) {}
    readConcurrency 控制并发线程数(影响内存占用和性能) 4
    validateRelationships 验证关系两端节点是否存在于节点集合中(避免孤立边) true
  • 示例

      [cypher]
    1
    2
    3
    4
    5
    { parameters: { appNames: ["my-web"] }, readConcurrency: 8, validateRelationships: false }

三、返回值与性能优化

YIELD 字段

  • graphName:投影图的名称(与输入参数一致)
  • nodeCount:加载的节点总数
  • relationshipCount:加载的关系总数

优化策略

  1. 索引加速:为 nodeQuery 中的筛选条件(如 AppName)创建索引
  2. 内存控制:使用 gds.graph.create.cypher.estimate 预估算内存消耗(避免OOM)
  3. 动态参数化:通过 parameters 配置复用查询模板,提升灵活性
  4. 批量写入:在事务外执行投影操作,减少内存锁竞争

四、典型错误与规避方案

  1. 空图错误
    • 现象Failed to load a relationship because...
    • 根因nodeQuery 未覆盖关系的端点节点
    • 解决:启用 validateRelationships: false 或调整节点查询逻辑
  2. 版本兼容性
    • Neo4j 4.1.1 异常:升级到最新补丁版本
    • Legacy Cypher 迁移:使用新语法 gds.graph.cypher.project
  3. 属性缺失
    • 处理技巧:使用 coalesce(r.weight, 1.0) 设置默认值

五、应用场景对比

场景特征 适用方法 优势 局限
动态子图筛选 Cypher投影 灵活定义节点/关系逻辑 内存消耗较高
全图或固定模式 原生投影(Native) 加载速度快,适合生产环境 灵活性低
复杂属性处理 混合投影(Cypher+Native) 结合两种优势(需GDS 2.0+) 配置复杂度高

六、完整示例

  [cypher]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// 动态创建包含过滤条件的图投影 CALL gds.graph.project.cypher( 'filteredGraph', // 节点查询:筛选AppName在列表中的i_app节点及其关联节点 'MATCH (n:i_app) WHERE n.name IN $apps CALL apoc.path.expandConfig(n, {maxLevel:2}) UNWIND nodes(path) AS node RETURN DISTINCT id(node) AS id, labels(node) AS labels', // 关系查询:捕获所有关联关系(含方向) 'MATCH (a)-[r]->(b) WHERE a.name IN $apps AND b.name IN $apps RETURN id(a) AS source, id(b) AS target, type(r) AS type', // 配置参数:动态传入应用名列表 { parameters: { apps: ['my-web'] } } ) YIELD nodeCount, relationshipCount; // 执行PageRank算法 CALL gds.pageRank.stream('filteredGraph') YIELD nodeId, score RETURN gds.util.asNode(nodeId).id AS nodeId, score ORDER BY score DESC LIMIT 10;

设计要点

  • 使用 apoc.path.expandConfig 实现深度控制
  • 通过 DISTINCT 避免重复节点
  • 参数化提升查询复用性

将刚才符合我要求 i_app 开始,pageRank 排序的 cypher 代码,调整为 neo4j driver java 代码实现方法,其中 appNames 作为方法的参数。

基于 Java Driver 的 PageRank 动态图计算实现方案

一、需求解读

需将原有 Cypher 查询转换为 Java 代码,实现以下功能:

  1. 动态参数传递appNames 作为方法参数传入
  2. 内存图投影:通过 Cypher 动态构建子图(i_app 起始,最大 2 层)
  3. 算法执行:运行 PageRank 并返回 Top9 结果
  4. 资源管理:符合 Driver API 规范(连接池、事务、异常处理)

二、核心实现逻辑分解

初始化Driver
创建内存图投影
执行PageRank算法
提取Top9结果
资源释放

三、完整 Java 实现代码

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import org.neo4j.driver.*; import java.util.List; import java.util.Map; import java.util.stream.Collectors; public class PageRankService implements AutoCloseable { private final Driver driver; // 初始化Driver(建议使用连接池) public PageRankService(String uri, String user, String password) { driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password)); } // 主业务方法(appNames为动态参数) public List<Record> calculateTopPageRankNodes(List<String> appNames) { try (Session session = driver.session()) { // 步骤1:创建Cypher投影 createGraphProjection(session, appNames); // 步骤2:执行PageRank算法 return session.executeRead(tx -> { Result result = tx.run( "CALL gds.pageRank.stream('myGraph') " + "YIELD nodeId, score " + "RETURN gds.util.asNode(nodeId) AS node, score " + "ORDER BY score DESC LIMIT 9"); return result.list(); }); } } // 创建动态图投影(私有方法封装) private void createGraphProjection(Session session, List<String> appNames) { String nodeQuery = "MATCH (start:i_app) WHERE start.name IN $appNames " + "CALL apoc.path.expandConfig(start, { " + " relationshipFilter: '>', " + " labelFilter: '>i_vm|i_phy', " + " minLevel: 1, " + " maxLevel: 2, " + " uniqueness: 'NODE_GLOBAL' " + "}) YIELD path " + "UNWIND nodes(path) AS node " + "RETURN DISTINCT id(node) AS id, labels(node) AS labels"; String relQuery = "MATCH (start:i_app) WHERE start.name IN $appNames " + "CALL apoc.path.expandConfig(start, { " + " relationshipFilter: '>', " + " labelFilter: '>i_vm|i_phy', " + " minLevel: 1, " + " maxLevel: 2, " + " uniqueness: 'NODE_GLOBAL' " + "}) YIELD path " + "UNWIND relationships(path) AS rel " + "RETURN DISTINCT id(startNode(rel)) AS source, " + "id(endNode(rel)) AS target, type(rel) AS type"; // 执行Cypher投影(带参数) session.run( "CALL gds.graph.project.cypher($graphName, $nodeQuery, $relQuery, {parameters: {appNames: $appNames}})", Values.parameters( "graphName", "myGraph", "nodeQuery", nodeQuery, "relQuery", relQuery, "appNames", appNames ) ).consume(); // 显式消费结果确保执行 } @Override public void close() throws Exception { driver.close(); } // 示例用法 public static void main(String[] args) { try (PageRankService service = new PageRankService("bolt://localhost:7687", "neo4j", "password")) { List<Record> topNodes = service.calculateTopPageRankNodes(List.of("my-web")); topNodes.forEach(record -> System.out.println(record.get("node").asNode() + " Score: " + record.get("score"))); } } }

四、关键实现细节解析

  1. 参数化传递
    • 使用 $appNames 占位符注入参数(避免 SQL 注入)(#evidence1)
    • 通过 Values.parameters() 构建参数映射,支持 List/Map 等复杂类型
  2. 资源管理
    • 实现 AutoCloseable 接口自动关闭 Driver(#evidence8)
    • 使用 try-with-resources 管理 Session 生命周期
  3. 投影创建优化
    • 将节点/关系查询拆分为独立字符串,提高可维护性
    • session.run().consume() 确保操作原子性(#evidence15)
  4. 结果处理
    • executeRead 用于只读操作,提升并发性能(#evidence3)
    • 使用 gds.util.asNode() 直接获取节点对象,减少二次查询

五、性能优化建议

  1. 索引加速
      [java]
    1
    2
    // 在应用启动时创建索引 session.run("CREATE INDEX FOR (n:i_app) ON (n.name)").consume();
  2. 批量处理
      [java]
    1
    2
    3
    // 分批次处理大型appNames列表 List<List<String>> batches = Lists.partition(appNames, 100); batches.forEach(batch -> calculateTopPageRankNodes(batch));
  3. 内存控制
      [java]
    1
    2
    3
    4
    5
    // 添加内存估算检查 Result result = session.run( "CALL gds.graph.project.cypher.estimate($nodeQuery, $relQuery) " + "YIELD requiredMemory", params); String memory = result.single().get("requiredMemory").asString();

六、异常处理策略

  1. 超时机制
      [java]
    1
    session.withConfig(QueryConfig.builder().withTimeout(Duration.ofSeconds(30)))
  2. 重试逻辑
      [java]
    1
    2
    3
    4
    5
    6
    7
    8
    int retries = 3; while (retries-- > 0) { try { return calculateTopPageRankNodes(appNames); } catch (ServiceUnavailableException e) { Thread.sleep(1000); } }

七、扩展性设计

  1. 多算法支持
      [java]
    1
    2
    3
    4
    5
    6
    public enum Algorithm { PAGERANK("gds.pageRank.stream"), BETWEENNESS("gds.betweenness.stream"); private final String procedure; }
  2. 动态结果映射
      [java]
    1
    2
    3
    public <T> List<T> mapResult(Result result, Function<Record, T> mapper) { return result.stream().map(mapper).collect(Collectors.toList()); }

八、生产环境注意事项

  1. 连接池配置
      [java]
    1
    2
    3
    4
    5
    Config config = Config.builder() .withConnectionPoolSize(10) .withMaxConnectionLifetime(30, TimeUnit.MINUTES) .build(); driver = GraphDatabase.driver(uri, AuthTokens.basic(user, password), config);
  2. 监控集成
      [java]
    1
    2
    MetricsAdapter metrics = new MetricsAdapter(); driver.metrics(metrics); // 对接Micrometer/Prometheus

以上实现方案充分利用了 Java Driver 的参数化查询、资源自动管理等特性(#evidence1)(#evidence8),同时结合 GDS 库的内存图计算能力(#evidence4),构建了一个高效、可维护的动态 PageRank 计算服务。通过方法参数化、异常重试、监控集成等设计,可满足生产环境复杂场景需求。

参考资料

https://github.com/neo4j/graph-data-science