手写 Redis 系列

java从零手写实现redis(一)如何实现固定大小的缓存?

java从零手写实现redis(三)redis expire 过期原理

java从零手写实现redis(三)内存数据如何重启不丢失?

java从零手写实现redis(四)添加监听器

java从零手写实现redis(五)过期策略的另一种实现思路

java从零手写实现redis(六)AOF 持久化原理详解及实现

java从零手写实现redis(七)LRU 缓存淘汰策略详解

java从零开始手写redis(八)朴素 LRU 淘汰算法性能优化

java从零开始手写redis(九)LRU 缓存淘汰算法如何避免缓存污染

java从零开始手写redis(十)缓存淘汰算法 LFU 最少使用频次

java从零开始手写redis(十一)缓存淘汰算法 COLOK 算法

java从零开始手写redis(十二)过期策略如何实现随机 keys 淘汰

java从零开始手写redis(十三)redis渐进式rehash详解

java从零开始手写redis(十四)JDK HashMap 源码解析

java从零开始手写redis(十四)JDK ConcurrentHashMap 源码解析

java从零开始手写redis(十五)实现自己的 HashMap

java从零开始手写redis(十六)实现渐进式 rehash map

前言

java从零手写实现redis(一)如何实现固定大小的缓存?

java从零手写实现redis(三)redis expire 过期原理

java从零手写实现redis(三)内存数据如何重启不丢失?

java从零手写实现redis(四)添加监听器

java从零手写实现redis(五)过期策略的另一种实现思路

java从零手写实现redis(六)AOF 持久化原理详解及实现

java从零手写实现redis(七)LRU 缓存淘汰策略详解

前面我们共同实现了 LRU 基本的算法,但是性能存在一定的问题,本节一起来看一下如何解决性能问题。

LRU 基础知识

是什么

LRU算法全称是最近最少使用算法(Least Recently Use),广泛的应用于缓存机制中。

当缓存使用的空间达到上限后,就需要从已有的数据中淘汰一部分以维持缓存的可用性,而淘汰数据的选择就是通过LRU算法完成的。

LRU算法的基本思想是基于局部性原理的时间局部性:

如果一个信息项正在被访问,那么在近期它很可能还会被再次访问。

拓展阅读

Apache Commons LRUMAP 源码详解

Redis 当做 LRU MAP 使用

java 从零开始手写 redis(七)redis LRU 驱除策略详解及实现

简单的实现思路

基于数组

方案:为每一个数据附加一个额外的属性——时间戳,当每一次访问数据时,更新该数据的时间戳至当前时间。

当数据空间已满后,则扫描整个数组,淘汰时间戳最小的数据。

不足:维护时间戳需要耗费额外的空间,淘汰数据时需要扫描整个数组。

这个时间复杂度太差,空间复杂度也不好。

基于长度有限的双向链表

方案:访问一个数据时,当数据不在链表中,则将数据插入至链表头部,如果在链表中,则将该数据移至链表头部。当数据空间已满后,则淘汰链表最末尾的数据。

不足:插入数据或取数据时,需要扫描整个链表。

这个就是我们上一节实现的方式,缺点还是很明显,每次确认元素是否存在,都要消耗 O(n) 的时间复杂度去查询。

基于双向链表和哈希表

方案:为了改进上面需要扫描链表的缺陷,配合哈希表,将数据和链表中的节点形成映射,将插入操作和读取操作的时间复杂度从O(N)降至O(1)

缺点:这个使我们上一节提到的优化思路,不过还是有缺点的,那就是空间复杂度翻倍。

数据结构的选择

(1)基于数组的实现

这里不建议选择 array 或者 ArrayList,因为读取的时间复杂度为 O(1),但是更新相对是比较慢的,虽然 jdk 使用的是 System.arrayCopy。

(2)基于链表的实现

如果我们选择链表,HashMap 中还是不能简单的存储 key, 和对应的下标。

因为链表的遍历,实际上还是 O(n) 的,双向链表理论上可以优化一半,但是这并不是我们想要的 O(1) 效果。

(3)基于双向列表

双向链表我们保持不变。

Map 中 key 对应的值我们放双向链表的节点信息。

那实现方式就变成了实现一个双向链表。

代码实现

  • 节点定义
/**
 * 双向链表节点
 * @author binbin.hou
 * @since 0.0.12
 * @param <K> key
 * @param <V> value
 */
public class DoubleListNode<K,V> {

    /**
     * 键
     * @since 0.0.12
     */
    private K key;

    /**
     * 值
     * @since 0.0.12
     */
    private V value;

    /**
     * 前一个节点
     * @since 0.0.12
     */
    private DoubleListNode<K,V> pre;

    /**
     * 后一个节点
     * @since 0.0.12
     */
    private DoubleListNode<K,V> next;

    //fluent get & set
}
  • 核心代码实现

我们保持和原来的接口不变,实现如下:

public class CacheEvictLruDoubleListMap<K,V> extends AbstractCacheEvict<K,V> {

    private static final Log log = LogFactory.getLog(CacheEvictLruDoubleListMap.class);


    /**
     * 头结点
     * @since 0.0.12
     */
    private DoubleListNode<K,V> head;

    /**
     * 尾巴结点
     * @since 0.0.12
     */
    private DoubleListNode<K,V> tail;

    /**
     * map 信息
     *
     * key: 元素信息
     * value: 元素在 list 中对应的节点信息
     * @since 0.0.12
     */
    private Map<K, DoubleListNode<K,V>> indexMap;

    public CacheEvictLruDoubleListMap() {
        this.indexMap = new HashMap<>();
        this.head = new DoubleListNode<>();
        this.tail = new DoubleListNode<>();

        this.head.next(this.tail);
        this.tail.pre(this.head);
    }

    @Override
    protected ICacheEntry<K, V> doEvict(ICacheEvictContext<K, V> context) {
        ICacheEntry<K, V> result = null;
        final ICache<K,V> cache = context.cache();
        // 超过限制,移除队尾的元素
        if(cache.size() >= context.size()) {
            // 获取尾巴节点的前一个元素
            DoubleListNode<K,V> tailPre = this.tail.pre();
            if(tailPre == this.head) {
                log.error("当前列表为空,无法进行删除");
                throw new CacheRuntimeException("不可删除头结点!");
            }

            K evictKey = tailPre.key();
            V evictValue = cache.remove(evictKey);
            result = new CacheEntry<>(evictKey, evictValue);
        }

        return result;
    }


    /**
     * 放入元素
     *
     * (1)删除已经存在的
     * (2)新元素放到元素头部
     *
     * @param key 元素
     * @since 0.0.12
     */
    @Override
    public void update(final K key) {
        //1. 执行删除
        this.remove(key);

        //2. 新元素插入到头部
        //head<->next
        //变成:head<->new<->next
        DoubleListNode<K,V> newNode = new DoubleListNode<>();
        newNode.key(key);

        DoubleListNode<K,V> next = this.head.next();
        this.head.next(newNode);
        newNode.pre(this.head);
        next.pre(newNode);
        newNode.next(next);

        //2.2 插入到 map 中
        indexMap.put(key, newNode);
    }

    /**
     * 移除元素
     *
     * 1. 获取 map 中的元素
     * 2. 不存在直接返回,存在执行以下步骤:
     * 2.1 删除双向链表中的元素
     * 2.2 删除 map 中的元素
     *
     * @param key 元素
     * @since 0.0.12
     */
    @Override
    public void remove(final K key) {
        DoubleListNode<K,V> node = indexMap.get(key);

        if(ObjectUtil.isNull(node)) {
            return;
        }

        // 删除 list node
        // A<->B<->C
        // 删除 B,需要变成: A<->C
        DoubleListNode<K,V> pre = node.pre();
        DoubleListNode<K,V> next = node.next();

        pre.next(next);
        next.pre(pre);

        // 删除 map 中对应信息
        this.indexMap.remove(key);
    }

}

实现起来不难,就是一个简易版本的双向列表。

只是获取节点的时候,借助了一下 map,让时间复杂度降低为 O(1)。

测试

我们验证一下自己的实现:

ICache<String, String> cache = CacheBs.<String,String>newInstance()
        .size(3)
        .evict(CacheEvicts.<String, String>lruDoubleListMap())
        .build();
cache.put("A", "hello");
cache.put("B", "world");
cache.put("C", "FIFO");

// 访问一次A
cache.get("A");
cache.put("D", "LRU");

Assert.assertEquals(3, cache.size());
System.out.println(cache.keySet());
  • 日志
[DEBUG] [2020-10-03 09:37:41.007] [main] [c.g.h.c.c.s.l.r.CacheRemoveListener.listen] - Remove key: B, value: world, type: evict
[D, A, C]

因为我们访问过一次 A,所以 B 已经变成最少被访问的元素。

基于 LinkedHashMap 实现

实际上,LinkedHashMap 本身就是对于 list 和 hashMap 的一种结合的数据结构,我们可以直接使用 jdk 中 LinkedHashMap 去实现。

直接实现

public class LRUCache extends LinkedHashMap {

    private int capacity;

    public LRUCache(int capacity) {
        // 注意这里将LinkedHashMap的accessOrder设为true
        super(16, 0.75f, true);
        this.capacity = capacity;
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry eldest) {
        return super.size() >= capacity;
    }
}

默认LinkedHashMap并不会淘汰数据,所以我们重写了它的removeEldestEntry()方法,当数据数量达到预设上限后,淘汰数据,accessOrder设为true意为按照访问的顺序排序。

整个实现的代码量并不大,主要都是应用LinkedHashMap的特性。

简单改造

我们对这个方法简单改造下,让其适应我们定义的接口。

ICache<String, String> cache = CacheBs.<String,String>newInstance()
        .size(3)
        .evict(CacheEvicts.<String, String>lruLinkedHashMap())
        .build();
cache.put("A", "hello");
cache.put("B", "world");
cache.put("C", "FIFO");
// 访问一次A
cache.get("A");
cache.put("D", "LRU");

Assert.assertEquals(3, cache.size());
System.out.println(cache.keySet());

测试

  • 代码
ICache<String, String> cache = CacheBs.<String,String>newInstance()
        .size(3)
        .evict(CacheEvicts.<String, String>lruLinkedHashMap())
        .build();
cache.put("A", "hello");
cache.put("B", "world");
cache.put("C", "FIFO");
// 访问一次A
cache.get("A");
cache.put("D", "LRU");

Assert.assertEquals(3, cache.size());
System.out.println(cache.keySet());
  • 日志
[DEBUG] [2020-10-03 10:20:57.842] [main] [c.g.h.c.c.s.l.r.CacheRemoveListener.listen] - Remove key: B, value: world, type: evict
[D, A, C]

小结

上一节中提到的数组 O(n) 遍历的问题,本节已经基本解决了。

但其实这种算法依然存在一定的问题,比如当偶发性的批量操作时,会导致热点数据被非热点数据挤出缓存,下一节我们一起学习如何进一步改进 LRU 算法。

文中主要讲述了思路,实现部分因为篇幅限制,没有全部贴出来。

开源地址:https://github.com/houbb/cache

觉得本文对你有帮助的话,欢迎点赞评论收藏关注一波。你的鼓励,是我最大的动力~

不知道你有哪些收获呢?或者有其他更好的想法,欢迎留言区和我一起讨论,期待与你的思考相遇。

参考资料

缓存淘汰算法–LRU算法

LRU算法及其优化策略——算法篇