拓展阅读

JVM FULL GC 生产问题 I-多线程通用实现

JVM FULL GC 生产问题 II-如何定位内存泄露? 线程通用实现

JVM FULL GC 生产问题 III-多线程执行队列的封装实现,进一步抽象

java 多线程实现通用方法 threadpool implement in java

情景回顾

我们在上一篇 JVM FULL GC 生产问题笔记 中提出了如何更好的实现一个多线程消费的实现方式。

没有看过的小伙伴建议看一下。

本来以为一切都可以结束的,不过又发生了一点点意外,这里记录一下,避免自己和小伙伴们踩坑。

生产-消费者模式

简介

上一节中我们尝试了多种多线程方案,总会有各种各样奇怪的问题。

于是最后决定使用生产-消费者模式去实现。

实现如下:

这里使用 AtomicLong 做了一个简单的计数。

userMapper.handle2(Arrays.asList(user)); 这个方法是同事以前的方法,当然做了很多简化。

就没有修改,入参是一个列表。这里为了兼容,使用 Arrays.asList() 简单封装了一下。

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import com.github.houbb.thread.demo.dal.entity.User; import com.github.houbb.thread.demo.dal.mapper.UserMapper; import com.github.houbb.thread.demo.service.UserService; import java.util.Arrays; import java.util.List; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicLong; /** * 分页查询 * @author binbin.hou * @since 1.0.0 */ 2 public class UserServicePageQueue implements UserService { // 分页大小 private final int pageSize = 10000; private static final int THREAD_NUM = 20; private final Executor executor = Executors.newFixedThreadPool(THREAD_NUM); private final ArrayBlockingQueue<User> queue = new ArrayBlockingQueue<>(2 * pageSize, true); // 模拟注入 private UserMapper userMapper = new UserMapper(); /** * 计算总数 */ private AtomicLong counter = new AtomicLong(0); // 消费线程任务 public class ConsumerTask implements Runnable { @Override public void run() { while (true) { try { // 会阻塞直到获取到元素 User user = queue.take(); userMapper.handle2(Arrays.asList(user)); long count = counter.incrementAndGet(); } catch (InterruptedException e) { e.printStackTrace(); } } } } // 初始化消费者进程 // 启动五个进程去处理 private void startConsumer() { for(int i = 0; i < THREAD_NUM; i++) { ConsumerTask task = new ConsumerTask(); executor.execute(task); } } /** * 处理所有的用户 */ public void handleAllUser() { // 启动消费者 startConsumer(); // 充值计数器 counter = new AtomicLong(0); // 分页查询 int total = userMapper.count(); int totalPage = total / pageSize; for(int i = 1; i <= totalPage; i++) { // 等待消费者处理已有的信息 awaitQueue(pageSize); System.out.println(UserMapper.currentTime() + " 第 " + i + " 页查询开始"); List<User> userList = userMapper.selectList(i, pageSize); // 直接往队列里面扔 queue.addAll(userList); System.out.println(UserMapper.currentTime() + " 第 " + i + " 页查询全部完成"); } } /** * 等待,直到 queue 的小于等于 limit,才进行生产处理 * * 首先判断队列的大小,可以调整为0的时候,才查询。 * 不过因为查询也比较耗时,所以可以调整为小于 pageSize 的时候就可以准备查询 * 从而保障消费者不会等待太久 * @param limit 限制 */ private void awaitQueue(int limit) { while (true) { // 获取阻塞队列的大小 int size = queue.size(); if(size >= limit) { try { // 根据实际的情况进行调整 Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } else { break; } } } }

测试验证

当然这个方法在集成环境跑没有任何的问题。

于是就开始直接上生产验证,结果开始很快,然后就可以变慢了。

一看 GC 日志,梅开二度,FULL GC。

可恶,圣斗士竟然会被同一招打败 2 次吗?

FULL GC 的产生

一般要发现 full gc,最直观的感受就是程序很慢。

这时候你就需要添加一下 GC 日志打印,看一下是否有 full gc 即可。

这个最坑的地方就在于,性能问题是测试一般无法验证的,除非你进行压测。

压测还要同时满足两个条件:

(1)数据量足够大,或者说 QPS 足够高。持续压

(2)资源足够少,也就是还想马儿跑,还想马儿不吃草。

好巧不巧,我们同时赶上了两点。

那么问题又来了,如何定位为什么 FULL GC 呢?

内存泄露

程序变慢并不是一开始就慢,而是开始很快,然后变慢,接着就是不停的 FULL GC。

这就和自然的想到是内存泄露。

如何定位内存泄露呢?

你可以分成下面几步:

(1)看代码,是否有明显存在内存泄露的地方。然后修改验证。如果无法解决,则找出可能存在问题的地方,执行第二步。

(2)把 FULL GC 时的堆栈信息 dump 下来,分析到底是什么数据过大,然后结合 1 去解决。

接下来,让我们一起看一下这个过程的简化版本记录。

问题定位

看代码

最基本的生产者-消费者模式确认了即便,感觉没啥问题。

于是就要看一下消费者模式中调用其他人的方法问题。

方法的核心目的

(1)遍历入参列表,执行业务处理。

(2)把当前批次的处理结果写入到文件中。

方法实现

简化版本如下:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/** * 模拟用户处理 * * @param userList 用户列表 */ public void handle2(List<User> userList) { String targetDir = "D:\\data\\"; // 理论让每一个线程只读写属于自己的文件 String fileName = Thread.currentThread().getName()+".txt"; String fullFileName = targetDir + fileName; FileWriter fileWriter = null; BufferedWriter bufferedWriter = null; User userExample; try { fileWriter = new FileWriter(fullFileName); bufferedWriter = new BufferedWriter(fileWriter); StringBuffer stringBuffer = null; for(User user : userList) { stringBuffer = new StringBuffer(); // 业务逻辑 userExample = new User(); userExample.setId(user.getId()); // 如果查询到的结果已存在,则跳过处理 List<User> userCountList = queryUserList(userExample); if(userCountList != null && userCountList.size() > 0) { return; } // 其他处理逻辑 // 记录最后的结果 stringBuffer.append("用户") .append(user.getId()) .append("同步结果完成"); bufferedWriter.newLine(); bufferedWriter.write(stringBuffer.toString()); } // 处理结果写入到文件中 bufferedWriter.newLine(); bufferedWriter.flush(); bufferedWriter.close(); fileWriter.close(); } catch (Exception exception) { exception.printStackTrace(); } finally { try { if (null != bufferedWriter) { bufferedWriter.close(); } if (null != fileWriter) { fileWriter.close(); } } catch (Exception e) { } } }

这种代码怎么说呢,大概就是祖传代码吧,不晓得大家有没有见过,或者写过呢?

我们可以不看文件部分,核心部分实际上只有:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
User userExample; for(User user : userList) { // 业务逻辑 userExample = new User(); userExample.setId(user.getId()); // 如果查询到的结果已存在,则跳过处理 List<User> userCountList = queryUserList(userExample); if(userCountList != null && userCountList.size() > 0) { return; } // 其他处理逻辑 }

代码存在的问题

你觉得上面的代码有哪些问题?

什么地方可能存在内存泄露呢?

有应该如何改进呢?

看堆栈

如果你看代码已经确定了疑惑的地方,那么接下来就是去看一下堆栈,验证下自己的猜想。

堆栈的查看方式

jvm 堆栈查看的方式很多,我们这里以 jmap 命令为例。

(1)找到 java 进程的 pid

你可以执行 jps 或者 ps ux 等,选择一个你喜欢的。

我们 windows 本地测试了下(实际生产一般是 linux 系统):

  [plaintext]
1
2
3
4
5
6
D:\Program Files\Java\jdk1.8.0_192\bin>jps 11168 Jps 3440 RemoteMavenServer36 4512 11660 Launcher 11964 UserServicePageQueue

UserServicePageQueue 是我们执行的测试程序,所以 pid 是 11964

(2)执行 jmap 获取堆栈信息

命令:

  [plaintext]
1
jmap -histo 11964

效果如下:

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
D:\Program Files\Java\jdk1.8.0_192\bin>jmap -histo 11964 num #instances #bytes class name ---------------------------------------------- 1: 161031 20851264 [C 2: 157949 3790776 java.lang.String 3: 1709 3699696 [B 4: 3472 3688440 [I 5: 139358 3344592 com.github.houbb.thread.demo.dal.entity.User 6: 139614 2233824 java.lang.Integer 7: 12716 508640 java.io.FileDescriptor 8: 12714 406848 java.io.FileOutputStream 9: 7122 284880 java.lang.ref.Finalizer 10: 12875 206000 java.lang.Object ...

当然下面还有很多,你可以使用 head 命令过滤。

当然,如果服务器不支持这个命令,你可以把堆栈信息输出到文件中:

  [plaintext]
1
jmap -histo 11964 >> dump.txt

堆栈分析

我们可以很明显发现不合理的地方:

[C 这里指的是 chars,有 161031。

String 是字符串,有 157949。

当然还有 User 对象,有 139358。

我们每一次分页是 1W 个,queue 中最多是 19999 个,这么多对象显然不合理。

代码中的问题

chars 和 String 为什么这么多

代码给人的第一感受,就是和业务逻辑没啥关系的写文件了。

很多小伙伴肯定想到了可以使用 TWR 简化一下代码,不过这里存在两个问题:

(1)最后文件中能记录所有的执行结果吗?

(2)有没有更好的方式呢?

对于问题1,答案是不能。虽然我们为每一个线程创建一个文件,但是实际测试,发现文件会被覆盖。

实际上比起我们自己写文件,更应该使用 log 去记录结果,这样更加优雅。

于是,最后把代码简化如下:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//日志 User userExample; for(User user : userList) { // 业务逻辑 userExample = new User(); userExample.setId(user.getId()); // 如果查询到的结果已存在,则跳过处理 List<User> userCountList = queryUserList(userExample); if(userCountList != null && userCountList.size() > 0) { // 日志 return; } // 其他处理逻辑 // 日志记录结果 }

user 对象为什么这里多?

我们看一下核心业务代码:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
User userExample; for(User user : userList) { // 业务逻辑 userExample = new User(); userExample.setId(user.getId()); // 如果查询到的结果已存在,则跳过处理 List<User> userCountList = queryUserList(userExample); if(userCountList != null && userCountList.size() > 0) { return; } // 其他处理逻辑 }

这里在判断是否存在的时候构建了一个 mybatis 中常用的 User 查询条件,然后判断查询的列表大小。

这里有两个问题:

(1)判断是否存在,最好使用 count,而不是判断列表结果大小。

(2)User userExample 的作用域尽量小一点。

调整如下:

  [java]
1
2
3
4
5
6
7
8
9
10
11
for(User user : userList) { // 业务逻辑 User userExample = new User(); userExample.setId(user.getId()); // 如果查询到的结果已存在,则跳过处理 int count = selectCount(userExample); if(count > 0) { return; } // 其他业务逻辑 }

调整之后的代码

这里的 System.out.println 实际使用时用 log 替代,这里只是为了演示。

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/** * 模拟用户处理 * * @param userList 用户列表 */ public void handle3(List<User> userList) { System.out.println("入参:" + userList); for(User user : userList) { // 业务逻辑 User userExample = new User(); userExample.setId(user.getId()); // 如果查询到的结果已存在,则跳过处理 int count = selectCount(userExample); if(count > 0) { System.out.println("如果查询到的结果已存在,则跳过处理"); continue; } // 其他业务逻辑 System.out.println("业务逻辑处理结果"); } }

生产验证

全部改完之后,重新部署验证,一切顺利。

希望不会有第三篇。:)

小结

当然验证的过程中还发生过一点小插曲,比如开发没有权限看堆栈信息,执行命令时程序已经假死等等。

生产 full gc 是一个比较麻烦的问题,一个是难以复现,另一个是如果是偶发性的,又是实时链路,可能也不好执行 dump 命令。

所以写代码还是写的尽可能简单的好,不然会有各种问题。

能复用已有的工具、中间件尽量复用。

这样看来,我们自己写的生产-消费者模式也不太好,因为复用性不强,所以建议使用公司已有的 mq 工具,不过如何选择,还是看具体的业务场景。

架构,就是权衡。

希望本文对你有所帮助,如果喜欢,欢迎点赞收藏转发一波。

我是老马,期待与你的下次相遇。