179. Largest Number
Given a list of non-negative integers nums, arrange them such that they form the largest number and return it.
Since the result may be very large, so you need to return a string instead of an integer.
EX
Example 1:
Input: nums = [10,2]
Output: "210"
Example 2:
Input: nums = [3,30,34,5,9]
Output: "9534330"
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 10^9
思路
这里的想法基本上是实现一个 String 比较器来决定在连接过程中哪个 String 应该先出现。
因为当你有 2 个数字时(让我们将它们转换成字符串),你只会面临 2 种情况:
例如:
String s1 = "9";
String s2 = "31";
String case1 = s1 + s2; // 931
String case2 = s2 + s1; // 319
显然,就价值而言,case1 大于 case2。
所以,我们应该始终将 s1 放在 s2 的前面。
java 实现
class Solution {
public String largestNumber(int[] nums) {
//1. int 转 string
List<String> stringList = new ArrayList<>(nums.length);
for(int i : nums) {
stringList.add(String.valueOf(i));
}
//2. 排序
Collections.sort(stringList, new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
String s1 = o1+o2;
String s2 = o2+o1;
// reverse order here, so we can do append() later
return s2.compareTo(s1);
}
});
//3. 构建结果
// An extreme edge case by lc, say you have only a bunch of 0 in your int array
if(stringList.get(0).charAt(0) == '0') {
return "0";
}
StringBuilder sb = new StringBuilder();
for(String s: stringList) {
sb.append(s);
}
return sb.toString();
}
}
数学证明
有时候我们感觉不需要证明的东西,必须要通过严格地数学证明。直觉往往会出错。
我们这里找到一个评论区的证明过程。
定理
We use a.b to represent the concatenation of non-negative integers a and b .
Theorem:
Let a, b, and c be non-negative integers.
If a.b > b.a and b.c > c.b , we have a.c > c.a .
证明
Proof:
We use [a] to denote the length of the decimal representation of a .
For example, if a = 10 , we have [a] = 2 .
Since a.b > b.a and b.c > c.b , we have
a * 10^[b] + b > b * 10^[a] + a
b * 10^[c] + c > c * 10^[b] + b
, which is equivalent to
a * (10^[b] - 1) > b * (10^[a] - 1)
b * (10^[c] - 1) > c * (10^[b] - 1)
Obviously, 10^[a] - 1 > 0 , 10^[b] - 1 > 0
, and 10^[c] - 1 > 0
.
Since c >= 0 , according to the above inequalities, we know that b > 0 and a > 0 .
After multiplying the above two inequalities and cancelling b and (10^[b] - 1) , we have
a * (10^[c] - 1) > c * (10^[a] - 1)
This is equivalent to
a * 10^[c] + c > c * 10^[a] + a
, which means a.c > c.a .
Q.E.D.
参考资料
https://leetcode.com/problems/largest-number/
https://leetcode.com/problems/largest-number/discussion/
https://leetcode.com/problems/largest-number/solutions/53158/my-java-solution-to-share/?orderBy=most_votes