152. Maximum Product Subarray
Given an integer array nums, find a subarray that has the largest product, and return the product.
The test cases are generated so that the answer will fit in a 32-bit integer.
EX
Example 1:
Input: nums = [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: nums = [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Constraints:
1 <= nums.length <= 2 * 10^4
-10 <= nums[i] <= 10
The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
V1-暴力算法
思路
遍历所有的子队列,每次计算结果。
计算出最大的结果。
实现
public class T152_MaximumProductSubarray {
/**
* 最粗暴的算法:
*
* 1. 直接暴力计算。
*
* 直接移动 i, j 两个下标志,然后计算结果。
*
* @param nums
* @return
*/
public int maxProduct(int[] nums) {
int maxResult = nums[0];
for(int i = 0; i < nums.length; i++) {
for(int j = i; j < nums.length; j++) {
int result = calc(nums, i, j);
maxResult = Math.max(result, maxResult);
}
}
return maxResult;
}
/**
* 186 / 189 TEL
*
* @param nums
* @param startIndex
* @param endIndex
* @return
*/
private int calc(int[] nums, int startIndex, int endIndex) {
int result = 1;
for(int i = startIndex; i <= endIndex; i++) {
result *= nums[i];
}
return result;
}
}
当然,这种 TC 为 O(N^3),会超时。
V2-暴力优化
思路
我们其实在迭代所有的子队列的时候,也不用把所有的全部计算一遍。
直接用一个变量,计算对比也行。
实现
public class T152_MaximumProductSubarrayV2 {
/**
* 最粗暴的算法:
*
* https://leetcode.com/problems/maximum-product-subarray/solutions/1609493/c-simple-solution-w-explanation-optimization-from-brute-force-to-dp/
*
* @param nums
* @return
*/
public int maxProduct(int[] nums) {
int maxResult = nums[0];
for(int i = 0; i < nums.length; i++) {
// 大的迭代下初始化
int temp = 1;
for(int j = i; j < nums.length; j++) {
// 计算这个循环中的所有子数组,而不是从头计算
temp *= nums[j];
maxResult = Math.max(temp, maxResult);
}
}
return maxResult;
}
}
V3-dp
思路
其实我们没必要两次迭代。
只需要一次循环,然后把最大的乘积和最小的乘积保存下来。
之所以需要最小的,因为存在负数,负数*最小值,反而会变成最大值。
实现
public int maxProduct(int[] nums) {
int max = nums[0], min = nums[0], result = nums[0];
for (int i = 1; i < nums.length; i++) {
int maxMulti = max * nums[i];
int minMulti = min * nums[i];
max = Math.max(Math.max(maxMulti, minMulti), nums[i]);
min = Math.min(Math.min(maxMulti, minMulti), nums[i]);
// 更新最大值
result = Math.max(result, max);
}
return result;
}
参考资料
https://leetcode.com/problems/maximum-product-subarray/description/
https://leetcode.com/problems/maximum-product-subarray/solutions/48330/simple-java-code/
https://leetcode.com/problems/maximum-product-subarray/solutions/1608862/java-3-solutions-detailed-explanation-using-image/
https://leetcode.com/problems/maximum-product-subarray/solutions/48230/possibly-simplest-solution-with-o-n-time-complexity/