什么是算法?

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。

也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。

如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。

不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。

随机化算法在内的一些算法,包含了一些随机输入。

算法的特征

有穷性(Finiteness)

算法的有穷性是指算法必须能在执行有限个步骤之后终止;

确切性(Definiteness)

算法的每一步骤必须有确切的定义;

输入项(Input)

一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;

输出项(Output)

一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;

可行性(Effectiveness)

算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。

算法的要素

1、数据对象的运算和操作

计算机可以执行的基本操作是以指令的形式描述的。

一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:

1)算术运算:加减乘除等运算

2)逻辑运算:或、且、非等运算

3)关系运算:大于、小于、等于、不等于等运算

4)数据传输:输入、输出、赋值等运算

2、算法的控制结构

一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。

五大常用算法

分治

贪婪

动态规划

回溯

穷举

分治算法

基本概念

在计算机科学中,分治法是一种很重要的算法。

字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。

问题的规模越小,越容易直接求解,解题所需的计算时间也越少。

例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。

要想直接解决一个规模较大的问题,有时是相当困难的。

基本思想及策略

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。

这种算法设计策略叫做分治法。

如果原问题可分割成k个子问题,1≤k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。

由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。

这自然导致递归过程的产生。

分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治法适用的情况

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决

2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3) 利用该问题分解出的子问题的解可以合并为该问题的解;

4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

分治法的基本步骤

分治法在每一层递归上都有三个步骤:

step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题

step3 合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:

Divide-and-Conquer(P)

1. if |P|≤n0
2. then return(ADHOC(P))
3. 将P分解为较小的子问题 P1 ,P2 ,。。。,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
6. T ← MERGE(y1,y2,。。。,yk) △ 合并子问题
7. return(T)
其中 P 表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。

ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。

因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。

算法MERGE(y1,y2,。。。,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,。。。,Pk的相应的解y1,y2,。。。,yk合并为P的解。

分治法的复杂性分析

一个分治法将规模为n的问题分成k个规模为 n/m 的子问题去解。

设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。

再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用 f(n) 个单位时间。

用 T(n) 表示该分治法解规模为 P =n的问题所需的计算时间,则有:
T(n)= k T(n/m)+f(n)

通过迭代法求得方程的解:

递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。

通常假定T(n)是单调上升的,从而当 mi ≤ n ≤ mi+1时,T(mi)≤ T(n)≤ T(mi+1)。

动态规划算法

基本概念

动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。

一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

基本思想与策略

基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。

在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。

依次解决各子问题,最后一个子问题就是初始问题的解。

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

适用的情况

能采用动态规划求解的问题的一般要具有3个性质:

(1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

(2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

求解的基本步骤

动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。

这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。

如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

初始状态→│决策1│→│决策2│→…→│决策n│→结束状态

(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状况

参考资料

五大常用算法:分治、动态规划、贪心、回溯和分支界定详解