数组
大家好,我是老马。
今天我们一起来学习一下数组这种数据结构。
主要知识
数组需要拆分下面几个部分:
- 
    
理论介绍
 - 
    
源码分析
 - 
    
数据结构实现?
 - 
    
题目练习(按照算法思想分类)
 - 
    
梳理对应的 sdk 包
 - 
    
应用实战
 
因为这个是 leetcode 系列,所以重点是 4、5(对4再一次总结)。
为了照顾没有基础的小伙伴,会简单介绍一下1的基础理论。
简单介绍1,重点为4。其他不是本系列的重点。
数据结构篇
通用基础
链表
树
哈希表
stack 栈
graph 图
heap 堆
ordered set 有序集合
queue 队列
进阶
并查集
字典树
线段树
树状数组
后缀数组
chat
https://leetcode.cn/studyplan/top-100-liked/
101. 对称二叉树 symmetric-tree
v1-递归
思路
1) 终止条件 root == null,直接返回 true
然后看左右子树是否轴对称
2) 左右子树递归逻辑
- 
    
left == right == null,认为对称
 - 
    
left, right 一个为 null,认为不对称
 - 
    
二者的值不等,认为不对称
 - 
    
递归比较
(left.left, right.right) && (left.right, right.left)是否满足轴对称 
实现
    public boolean isSymmetric(TreeNode root) {
        if(root == null) {
                return true;
        }
        return isMirror(root.left, root.right);
    }
    private boolean isMirror(TreeNode left, TreeNode right) {
        // 比较
        if(left == null && right == null) {
            return true;
        }
        if(left == null || right == null) {
            return false;
        }
        // 值要相等
        if(left.val != right.val) {
            return false;
        }
        // 递归
        return isMirror(left.left, right.right) && isMirror(left.right, right.left);
    }
效果
0ms 100%
反思
时间复杂度:O(n),遍历所有节点。
空间复杂度:O(h),递归栈空间,h为树高。
v2 迭代法 - 使用队列(广度优先遍历)
思路
我们用 queue,整体逻辑类似。
只不过出队列,如果 left == right == null 需要继续比较,因为这只说明当前2个子树满足。
实现
    public boolean isSymmetric(TreeNode root) {
        if(root == null) {
            return true;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root.left);
        queue.offer(root.right);
        while (!queue.isEmpty()) {
            TreeNode left = queue.poll();
            TreeNode right = queue.poll();
            // 比较逻辑
            if(left == null && right == null) {
                // 这对节点对称,继续检查后续节点
                continue;
            }
            if(left == null || right == null) {
                return false;
            }
            // 值要相等
            if(left.val != right.val) {
                return false;
            }
            // 继续入栈
            queue.offer(left.left);
            queue.offer(right.right);
            queue.offer(left.right);
            queue.offer(right.left);
        }
        return true;
    }
效果
1ms 击败 14.81%
反思
时间复杂度:O(n)
空间复杂度:O(n)
v3-迭代法 - 使用栈(深度优先遍历)
思路
使用栈模拟递归过程,比较左右子节点是否满足镜像。
一条路径上节点会一直深入到底再回溯
注意:DFS BFS 针对这个看起来很类似,因为本质上就是不停的对比左右节点。
说白了就是访问的顺序不影响结果。
实现
    public boolean isSymmetric(TreeNode root) {
        if(root == null) {
            return true;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root.left);
        queue.offer(root.right);
        while (!queue.isEmpty()) {
            TreeNode left = queue.poll();
            TreeNode right = queue.poll();
            // 比较逻辑
            if(left == null && right == null) {
                // 这对节点对称,继续检查后续节点
                continue;
            }
            if(left == null || right == null) {
                return false;
            }
            // 值要相等
            if(left.val != right.val) {
                return false;
            }
            // 继续入栈
            queue.offer(left.left);
            queue.offer(right.right);
            queue.offer(left.right);
            queue.offer(right.left);
        }
        return true;
    }
效果
0ms 100%
反思
时间复杂度:O(n)
空间复杂度:O(n)
