# 一、实验概览

lab3实现的是基于代价的查询优化器,以下是讲义给出的实验的大纲:

  [plaintext]
1
2
3
4
5
6
7
8
9
10
11
12
Recall that the main idea of a cost-based optimizer is to: - Use statistics about tables to estimate “costs” of different > query plans. Typically, the cost of a plan is related to the cardinalities(基数) of > (number of tuples produced by) intermediate joins and selections, as well as the > selectivity of filter and join predicates. - Use these statistics to order joins and selections in an > optimal way, and to select the best implementation for join > algorithms from amongst several alternatives. In this lab, you will implement code to perform both of these functions.

我们可以使用表的统计数据去估计不同查询计划的代价。

通过这些统计信息,我们可以选择最佳的连接和选择顺序,从多个查询方案中选择一个最佳的计划去执行。

优化器结构概览:

query-struct

简单总结一下查询优化器的构成:

  1. Parser.Java 在初始化时会收集并构造所有表格的统计信息(包括极值, 分桶直方图等等),并存到statsMap中。当有查询请求发送到Parser中时,会调用parseQuery方法去处理

  2. parseQuery方法会把解析器解析后的结果去构造出一个LogicalPlan实例,然后调用LogicalPlan实例的physicalPlan方法, 构建一个物理执行计划(也即包含了各种执行算子),然后返回的是结果记录的迭代器,也就是我们在lab2中做的东西都会在physicalPlan中会被调用。

可以看到,lab2我们保证的是一般的SQL语句能够执行;

而在lab3,我们要考虑的事情是怎么让SQL执行得更快,最佳的连接的顺序是什么等待。

个人理解,总体的,lab3的查询优化应该分为两个阶段:

  • 第一阶段:收集表的统计信息,有了统计信息我们才可以进行估计;

  • 第二阶段:针对 logicalPlan, 生成各种 physicalPlan, 并根据统计信息进行估计每一种 Plan 的代价,找出最优的执行方案。

lab3共有4个exercise,前面两个exercise做的是第一阶段事情,后面两个exercise做的是第二阶段是事情。

除了上面信息,实验的文档outline部分还给出了很多十分有用的信息,告诉我们如何去统计数据,如何去计算代价等等,可以说是指导方针了。

二、Guideline

Exercise 1: IntHistogram.java

想要估计查询计划的代价,首先是得有统计数据。

那么数据是怎么从table中获取,以怎样的形式收集并统计呢?

这里用到了直方图。

简单来讲,一个直方图用于表示一个字段的统计信息,直方图将字段的值分为多个相同的区间,并统计每个区间的记录数,每个区间可以看做是一个桶,单个区间的范围大小看成桶的宽,记录数看成桶的宽,可以说是非常的形象:

这里采用了等宽直方图, 还由等深直方图

在这里插入图片描述

如果看不懂,可以看一下《数据库系统概念》里的图,帆船书里面的图会更容易懂一些。

一张人员信息表格,年龄字段的直方图如下:

在这里插入图片描述

exercise1 要做的就是根据给定的数据字段去构造出这样的直方图,然后是根据直方图的统计信息去估算某个值的选择性(selectivity)

下面是文档描述信息:

我们在这个实验只需要实现IntHistogram,而StringHistogram会将字符串转换为int类型然后调用IntHistogram。

首先,是构造器与属性部分。

构造器给出直方图的数据范围(最大值最小值),桶的数量。

有了这些信息,就可以构造出一个空的直方图。

具体实现也是一些很简单的数学计算:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
private int maxVal; private int minVal; private int[] heights; private int buckets; private int totalTuples; private int width; private int lastBucketWidth; public IntHistogram(int buckets, int min, int max) { // some code goes here this.minVal = min; this.maxVal = max; this.buckets = buckets; this.heights = new int[buckets]; int total = max - min + 1; this.width = Math.max(total / buckets, 1); this.lastBucketWidth = total - (this.width * (buckets - 1)); this.totalTuples = 0; }

然后就是构造直方图统计数据的过程,也很简单,以下是实现代码:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
public void addValue(Integer v) { // some code goes here if (v < this.minVal || v > this.maxVal) { return; } int bucketIndex = (v - this.minVal) / this.width; if (bucketIndex >= this.buckets) { return; } this.totalTuples++; this.heights[bucketIndex]++; }

接下来是这个 exercise 的大块头,根据直方图已有的统计信息,去计算进行某种运算时某个值表格记录的选择性。

这部分的资料在 outline 很详细的给出如何估计:

简单总结一下:

  1. 对于等值运算 f = const,我们要利用直方图估计一个等值表达式f = const的选择性,首先需要计算出包含该const值的桶,然后进行计算:result = (height / width) / totalTuples

​可以这样考虑, 我们假设一个桶内的数据是均匀分布的, 比如一个桶由20个记录, 宽为1-5, 那么 const = 3 的记录数就是 20 / 5 = 4,也即利用平均值来进行估算 而 (height / width) / totalTuples 就代表了 const = 3 的数据的在所有记录中的占比

  1. 对于非等值运算,我们采用的也是同样的思想:result = ((right - val) / bucketWidth) * (bucketTuples / totalTuples)

​ 可以这样理解: (right - val) / bucketWidth) 代表了 f > const 在这个桶内的占比

​ (bucketTuples / totalTuples) 代表了这个桶在所有 tuples 的占比

​ 二者相乘就是这个桶内 f > const 的占比

​ 此外, 还要加上后续每一个桶的占比, 才是最终的 f > const 的结果

在这里插入图片描述

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
private double estimateGreater(int bucketIndex, int predicateValue, int bucketWidth) { if (predicateValue < this.minVal) { return 1.0; } if (predicateValue >= this.maxVal) { return 0; } // As the lab3 doc, result = ((right - val) / bucketWidth) * (bucketTuples / totalTuples) int bucketRight = bucketIndex * this.width + this.minVal; double bucketRatio = (bucketRight - predicateValue) * 1.0 / bucketWidth; double result = bucketRatio * (this.heights[bucketIndex] * 1.0 / this.totalTuples); int sum = 0; for (int i = bucketIndex + 1; i < this.buckets; i++) { sum += this.heights[i]; } return (sum * 1.0) / this.totalTuples + result; } private double estimateEqual(int bucketIndex, int predicateValue, int bucketWidth) { if (predicateValue < this.minVal || predicateValue > this.maxVal) { return 0; } // As the lab3 doc, result = (bucketHeight / bucketWidth) / totalTuples double result = this.heights[bucketIndex]; result = result / bucketWidth; result = result / this.totalTuples; return result; } public double estimateSelectivity(Predicate.Op op, Integer v) { final int bucketIndex = Math.min((v - this.minVal) / this.width, this.buckets - 1); final int bucketWidth = bucketIndex < this.buckets - 1 ? this.width : this.lastBucketWidth; double ans; switch (op) { case GREATER_THAN: ans = estimateGreater(bucketIndex, v, bucketWidth); break; case EQUALS: ans = estimateEqual(bucketIndex, v, bucketWidth); break; case LESS_THAN: ans = 1.0 - estimateGreater(bucketIndex, v, bucketWidth) - estimateEqual(bucketIndex, v, bucketWidth); break; case LESS_THAN_OR_EQ: ans = 1.0 - estimateGreater(bucketIndex, v, bucketWidth); break; case GREATER_THAN_OR_EQ: ans = estimateEqual(bucketIndex, v, bucketWidth) + estimateGreater(bucketIndex, v, bucketWidth); break; case NOT_EQUALS: ans = 1.0 - estimateEqual(bucketIndex, v, bucketWidth); break; default: return -1; } return ans; }

Exercise 2: TableStats.java

代码实现

exercise2要做的是根据给定的tableid,扫描出所有记录,并对每一个字段建立一个直方图。

下面是outline给出的指导方案:

简单总结一下:

  1. 扫描全表,把这个表每个字段的值给取出来, 对应函数 fetchFieldValues()

  2. 对于每个字段, 构建 histogram

要做的就是上面这两件事,然后就是写代码过测试了:

  [java]
1
2
3
4
5
6
7
// FieldId -> histogram (String or Integer) private final Map<Integer, Histogram> histogramMap; private int totalTuples; private int totalPages; private int tableId; private int ioCostPerPage; private TupleDesc td;

构造器:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public TableStats(int tableid, int ioCostPerPage) { this.ioCostPerPage = ioCostPerPage; this.tableId = tableid; this.histogramMap = new HashMap<>(); this.totalTuples = 0; final HeapFile table = (HeapFile) Database.getCatalog().getDatabaseFile(tableid); this.totalPages = table.numPages(); this.td = table.getTupleDesc(); // Build histogram for every field final Map<Integer, ArrayList> fieldValues = fetchFieldValues(tableId); for (final int fieldId : fieldValues.keySet()) { if (td.getFieldType(fieldId) == Type.INT_TYPE) { final List<Integer> values = (ArrayList<Integer>) fieldValues.get(fieldId); final int minVal = Collections.min(values); final int maxVal = Collections.max(values); final IntHistogram histogram = new IntHistogram(NUM_HIST_BINS, minVal, maxVal); for (final Integer v : values) { histogram.addValue(v); } this.histogramMap.put(fieldId, histogram); } else { final List<String> values = (ArrayList<String>) fieldValues.get(fieldId); final StringHistogram histogram = new StringHistogram(NUM_HIST_BINS); for (final String v : values) { histogram.addValue(v); } this.histogramMap.put(fieldId, histogram); } } }

其中 fetchFieldValues 如下:

实现也比较简单,就是遍历所有的行。然后把所有的数据,按照列统计起来。

这里其实可以发现一个有趣的地方,那就是列式数据库,恰好可以省去这一步。

key: 列的下标 value: 列表内容

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// Fetch table field's values by seqScan private Map<Integer, ArrayList> fetchFieldValues(final int tableId) { final Map<Integer, ArrayList> fieldValueMap = new HashMap<>(); for (int i = 0; i < td.numFields(); i++) { if (td.getFieldType(i) == Type.INT_TYPE) { fieldValueMap.put(i, new ArrayList<Integer>()); } else { fieldValueMap.put(i, new ArrayList<String>()); } } final SeqScan seqScan = new SeqScan(new TransactionId(), tableId); try { seqScan.open(); while (seqScan.hasNext()) { this.totalTuples++; final Tuple next = seqScan.next(); for (int i = 0; i < td.numFields(); i++) { final Field field = next.getField(i); switch (field.getType()) { case INT_TYPE: { final int value = ((IntField) field).getValue(); fieldValueMap.get(i).add(value); break; } case STRING_TYPE: { final String value = ((StringField) field).getValue(); if (!Objects.equals(value, "")) { fieldValueMap.get(i).add(value); } break; } } } } } catch (Exception e) { e.printStackTrace(); } return fieldValueMap; }

计算IO成本:

  [java]
1
2
3
public double estimateScanCost() { return numPages * ioCostPerPage; }

根据选择性因子估计结果的记录数:

  [java]
1
2
3
public int estimateTableCardinality(double selectivityFactor) { return (int) (numTuples * selectivityFactor); }

最后是估计某个字段的选择性,也是调用exercise1写的估计某个值的选择性那些东西:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public double estimateSelectivity(int field, Predicate.Op op, Field constant) { if (this.histogramMap.containsKey(field)) { switch (this.td.getFieldType(field)) { case INT_TYPE: { final IntHistogram histogram = (IntHistogram) this.histogramMap.get(field); return histogram.estimateSelectivity(op, ((IntField) constant).getValue()); } case STRING_TYPE: { final StringHistogram histogram = (StringHistogram) this.histogramMap.get(field); return histogram.estimateSelectivity(op, ((StringField) constant).getValue()); } } } return 0.0; }

Exercise 3: Join Cost Estimation

exercise3要做的是估计连接查询的代价,以下是讲义:

其实这应该是四个exercise最容易的一个,就是看懂了连接查询的公式,然后写一下就好了,以下是公式:

scancost(t1) + scancost(t2) + joincost(t1 join t2) + scancost(t3) + joincost((t1 join t2) join t3) +

这里提一下基于成本的估计。

一般查询的成本分为I/O成本和CPU成本,I/O成本就是我们扫描表获取记录时,需要发生磁盘I/O,产生的时间成本为I/O成本;而有了记录,我们需要判断这些记录符不符合查询的条件,这需要CPU去做,其中产生的时间就是CPU成本。

对于连接查询来说,以两表连接为例,首先需要扫描一张表然后过滤出一些记录,然后把过滤完的记录,每一条都去与第二张表进行匹配,这里第一张表称为驱动表t1,第二张表称为被驱动表t2。

在两表连接中,驱动表只需要扫描一次,然后产生card1条记录,而被驱动表则需要扫描card1次,这是总的IO成本;然后假设t2表有card2条记录,则产生的CPU成本应该为 card1 * card2

所有总成本应该为:

  [plaintext]
1
t1的IO成本 + t1的记录数*t2的IO成本 (I/O成本) +t1的记录数*t2的记录数(CPU成本)

当然,实际的数据库去计算这些成本,都会有一些参数去调节,但总体的公式就是这样。

根据公式写出来的代码:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public double estimateJoinCost(LogicalJoinNode j, int card1, int card2, double cost1, double cost2) { if (j instanceof LogicalSubplanJoinNode) { // A LogicalSubplanJoinNode represents a subquery. // You do not need to implement proper support for these for Lab 3. return card1 + cost1 + cost2; } else { // Insert your code here. // HINT: You may need to use the variable "j" if you implemented // a join algorithm that's more complicated than a basic // nested-loops join. final double IoCost = cost1 + card1 * cost2; final double CpuCost = card1 * card2; return IoCost + CpuCost; } }

做完这个之后,该exercise的另一个任务就是估计连接产生的基数(cardinality),也就是产生结果的记录数。

简单总结一下:

  • 如果其中一个是非主键, 我们选择非主键的 card 作为 joinCard

  • 如果两个都是非主键, 我们选择 最大的 card 作为 joinCard

  • 如果两个都是主键, 我们选择最小的 card 作为 joinCard

为什么呢????????

有了上面的理论基础,就可以写出代码了:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
public static int estimateTableJoinCardinality(Predicate.Op joinOp, String table1Alias, String table2Alias, String field1PureName, String field2PureName, int card1, int card2, boolean t1pkey, boolean t2pkey, Map<String, TableStats> stats, Map<String, Integer> tableAliasToId) { /** * * For equality joins, when one of the attributes is a primary key, the number of tuples produced by the join cannot * be larger than the cardinality of the non-primary key attribute. * * * For equality joins when there is no primary key, it's hard to say much about what the size of the output * is -- it could be the size of the product of the cardinalities of the tables (if both tables have the * same value for all tuples) -- or it could be 0. It's fine to make up a simple heuristic (say, * the size of the larger of the two tables). * * * For range scans, it is similarly hard to say anything accurate about sizes. * The size of the output should be proportional to * the sizes of the inputs. It is fine to assume that a fixed fraction * of the cross-product is emitted by range scans (say, 30%). In general, the cost of a range * join should be larger than the cost of a non-primary key equality join of two tables * of the same size. */ int card = 1; if (t1pkey && t2pkey) { card = Math.min(card1, card2); } else if (!t1pkey && !t2pkey) { card = Math.max(card1, card2); } else { card = t1pkey ? card2 : card1; } switch (joinOp) { case EQUALS: { break; } case NOT_EQUALS: { card = card1 * card2 - card; break; } default: { card = card1 * card2 / 3; } } return card <= 0 ? 1 : card; }

Exercise 4: Join Ordering

exercise3我们完成了连接查询的成本估计与基数估计,而exercise4我们要做的是根据在多表连接的情况下,去选择一个最优的连接顺序,来实现对连接查询的优化。

有了这个连接顺序就可以生成执行计划了。

总体的思想是列举出所有的连接顺序,计算出每种连接顺序的代价,然后选择代价最小的连接顺序去执行。

但是,如何列举是个问题。

举个例子,对于两表连接,连接顺序有2 * 1种可能;对于三表连接,有3 * 2 * 1 = 6种可能。

可以发现,按照枚举的方式去弄,有n!种方案。当n = 7时,方案数有655280种;

当n = 10时,方案数可以达到176亿。

可以看到,这个缺点特别明显,就是当连接的表数一多,我们的方案数回很多,时间复杂度很高。

所以本实验采用的是一种基于动态规划的查询计划生成。

动态规划的思想, 相信大家都有所了解, 也即先将低纬度的给计算好, 然后让高纬度基于低纬度进行计算, 在本次实验中,

我们只关心 left-deep-tree

举个例子, 假设我们有四个表, 分别是: emp, dept, hobby, hobbies

我们想执行这个 sql 语句:

  [sql]
1
2
3
4
5
6
select xx from emp, dept, hobby, hobbies where hobbies.c1 = hobby.c0 and emp.c1 = dept.c0 and emp.c2 = hobbies.c0

如何计算这三个连接的顺序呢?

假设利用 node1 代表 hobbies.c1 = hobby.c0

node2 代表 emp.c1 = dept.c0

node3 代表 emp.c2 = hobbies.c0

  • 第一步: 先计算 1 个 joinNode 的执行代价, 也即 sql 中的 hobbies join hobby, emp join dept …., 并将这三个代价保存到一个 costmap 中 -»> node1->cost , node2 -> cost, node3->cost

  • 第二步, 计算 2 个 joinNode 的最优执行代价:

    • 生成2个 joinNode 的不同顺序: (node1, node2), (node1, node3), (node2, node3) 共三种顺序
    • 其中, 去除 (node1, node2), 因为这两个 node 没有交集, 也即不存在一个表, 同时出现在两个 node 中
    • 分别计算 (node1, node3), (node2, node3) 的最优执行计划
    • 以 (node1, node3) 为例, 我们可以选择让 (hobbies join hobby) join emp, 也可以选择让 (emp join hobbies) join hobby, 选择的依据就是哪个 cost 比较小 (这里可能不好理解, 因为多表join, 我们考虑的是 left-deep-tree, 也即是前面的 join 执行完后, 再和第三个表 join)
    • 这一步之后, costmap就有了 (node1, node3) -> cost, (node2, node3) -> cost
    • 同时, 还可以他们的最优执行顺序 planMap, 比如 (node1, node3) 的顺序可能是 (node3, node1)
  • 第三步, 计算 3 个 joinNode 的最优执行计划

    • 步骤和 第二步类似, 也是让两个 node 先 join, 再join 第三个 node

下面是实验讲义给出的动态规划法伪代码:

  [js]
1
2
3
4
5
6
7
8
9
10
11
j = set of join nodes for (i in 1...|j|): for s in {all length i subsets of j} bestPlan = {} for s' in {all length d-1 subsets of s} subplan = optjoin(s') plan = best way to join (s-s') to subplan if (cost(plan) < cost(bestPlan)) bestPlan = plan optjoin(s) = bestPlan return optjoin(j)

java 实现:

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public List<LogicalJoinNode> orderJoins(Map<String, TableStats> stats, Map<String, Double> filterSelectivities, boolean explain) throws ParsingException { final PlanCache pc = new PlanCache(); CostCard costCard = null; for (int i = 1; i <= this.joins.size(); i++) { // 生成 size = i 的子集, 可以利用回溯算法来做 final Set<Set<LogicalJoinNode>> subsets = enumerateSubsets(this.joins, i); for (final Set<LogicalJoinNode> subPlan : subsets) { double bestCost = Double.MAX_VALUE; for (final LogicalJoinNode removeNode : subPlan) { // 尝试将这个子集中的一个 node 从该子集中去除, 然后子集中剩下的 joinNode 进行 join, 估算代价 // 比如, node1 join node2 join node3 // 我们去除了 node1 , // 然后估算 (node2 join node3) join node1 和 node1 join (node2 join node3), 这两种哪个代价比较小, 而 (node2 join node3) 我们已经在之前的遍历中计算好了 final CostCard cc = computeCostAndCardOfSubplan(stats, filterSelectivities, removeNode, subPlan, bestCost, pc); if (cc != null) { bestCost = cc.cost; costCard = cc; } } // 保存该子集的最优执行计划 if (bestCost != Double.MAX_VALUE) { pc.addPlan(subPlan, bestCost, costCard.card, costCard.plan); } } } if (costCard != null) { return costCard.plan; } else { return joins; } }

computeCostAndCardOfSubplan 的逻辑如下:

这个函数的目的是为了计算处 card1, card2, cost1, cost2, 并通过这四个参数计算 join cost

举个例子, 如果 joinSet = (node1, node2, node3), removeNode = node3

  • 首先构建一个 news, 去除了 removeNode, news = (node1, node2)

  • 根据 News, 获取之前已经计算好的 bestPlan -> 也即顺序可能是 (node2 join node1)

  • 如果 removeNode 的 table1 包含在 news 中, 那么计算的流程就是 (node2 join node1) join node3

    • card1 = news.card, cost1 = news.bestCost

    • card2 = table2.card, cost2 = table2.cost

  • 同理, 如果 table2 包含在 news 中, 计算流程就是 node3 join (node2 join node1)

  [java]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
private CostCard computeCostAndCardOfSubplan(Map<String, TableStats> stats, Map<String, Double> filterSelectivities, LogicalJoinNode joinToRemove, Set<LogicalJoinNode> joinSet, double bestCostSoFar, PlanCache pc) throws ParsingException { LogicalJoinNode j = joinToRemove; List<LogicalJoinNode> prevBest; if (this.p.getTableId(j.t1Alias) == null) throw new ParsingException("Unknown table " + j.t1Alias); if (this.p.getTableId(j.t2Alias) == null) throw new ParsingException("Unknown table " + j.t2Alias); String table1Name = Database.getCatalog().getTableName(this.p.getTableId(j.t1Alias)); String table2Name = Database.getCatalog().getTableName(this.p.getTableId(j.t2Alias)); String table1Alias = j.t1Alias; String table2Alias = j.t2Alias; // 构建子集, 去除 removeNode Set<LogicalJoinNode> news = new HashSet<>(joinSet); news.remove(j); double t1cost, t2cost; int t1card, t2card; boolean leftPkey, rightPkey; if (news.isEmpty()) { // base case -- both are base relations // 如果news 为空 , 说明是 base case, 我们只需要计算 removeNode 的代价就可以了 prevBest = new ArrayList<>(); t1cost = stats.get(table1Name).estimateScanCost(); t1card = stats.get(table1Name).estimateTableCardinality(filterSelectivities.get(j.t1Alias)); leftPkey = isPkey(j.t1Alias, j.f1PureName); t2cost = table2Alias == null ? 0 : stats.get(table2Name).estimateScanCost(); t2card = table2Alias == null ? 0 : stats.get(table2Name).estimateTableCardinality( filterSelectivities.get(j.t2Alias)); rightPkey = table2Alias != null && isPkey(table2Alias, j.f2PureName); } else { // 如果不为空, 先取出 news 的最优执行计划, 包括执行顺序和代价 prevBest = pc.getOrder(news); // possible that we have not cached an answer, if subset // includes a cross product if (prevBest == null) { return null; } double prevBestCost = pc.getCost(news); int bestCard = pc.getCard(news); // 如果 removeNode 的 left 包含在 prevBest 中 // 那么 card1 = news 的 bestCard if (doesJoin(prevBest, table1Alias)) { // j.t1 is in prevBest t1cost = prevBestCost; // left side just has cost of whatever // left // subtree is t1card = bestCard; leftPkey = hasPkey(prevBest); t2cost = j.t2Alias == null ? 0 : stats.get(table2Name).estimateScanCost(); t2card = j.t2Alias == null ? 0 : stats.get(table2Name).estimateTableCardinality( filterSelectivities.get(j.t2Alias)); rightPkey = j.t2Alias != null && isPkey(j.t2Alias, j.f2PureName); } else if (doesJoin(prevBest, j.t2Alias)) { // j.t2 is in prevbest // (both // shouldn't be) t2cost = prevBestCost; // left side just has cost of whatever // left // subtree is t2card = bestCard; rightPkey = hasPkey(prevBest); t1cost = stats.get(table1Name).estimateScanCost(); t1card = stats.get(table1Name).estimateTableCardinality(filterSelectivities.get(j.t1Alias)); leftPkey = isPkey(j.t1Alias, j.f1PureName); } else { // don't consider this plan if one of j.t1 or j.t2 // isn't a table joined in prevBest (cross product) return null; } } // 计算 join 代价 double cost1 = estimateJoinCost(j, t1card, t2card, t1cost, t2cost); LogicalJoinNode j2 = j.swapInnerOuter(); double cost2 = estimateJoinCost(j2, t2card, t1card, t2cost, t1cost); if (cost2 < cost1) { boolean tmp; j = j2; cost1 = cost2; tmp = rightPkey; rightPkey = leftPkey; leftPkey = tmp; } if (cost1 >= bestCostSoFar) return null; CostCard cc = new CostCard(); cc.card = estimateJoinCardinality(j, t1card, t2card, leftPkey, rightPkey, stats); cc.cost = cost1; cc.plan = new ArrayList<>(prevBest); cc.plan.add(j); // prevbest is left -- add new join to end return cc; }

我们可以对比一下优化前后提高的速度。优化前默认的连接顺序:耗时5s645ms

优化后选择了最佳的连接顺序:耗时1s673ms

在这里插入图片描述

可以看到,速度快了三倍。

可见查询优化是多么重要。

参考资料

https://github.com/CreatorsStack/CreatorDB/blob/master/document/lab2-resolve.md