

单调队列(Monotonic Queue) 是算法里一个非常高频、又极具“灵气”的工具。
你一旦掌握它,就能轻松解决一大类 滑动窗口最值 / 动态规划优化 的题目,比如:
- 🔹 LC239:滑动窗口最大值
- 🔹 LC1696:跳跃游戏 VI
- 🔹 LC1425:带约束的子序列和
- 🔹 LC862:和至少为 K 的最短子数组
- 🔹 各类“最大最小区间”、“DP 优化”等
下面我们分层讲,层层深入👇
这里有一个非负整数数组 arr,你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时,你可以跳到 i + arr[i] 或者 i - arr[i]。
请你判断自己是否能够跳到对应元素值为 0 的 任一 下标处。
注意,不管是什么情况下,你都无法跳到数组之外。
示例 1:
输入:arr = [4,2,3,0,3,1,2], start = 5
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 5 -> 下标 4 -> 下标 1 -> 下标 3
下标 5 -> 下标 6 -> 下标 4 -> 下标 1 -> 下标 3
示例 2:
给你一个整数数组 arr ,你一开始在数组的第一个元素处(下标为 0)。
每一步,你可以从下标 i 跳到下标 i + 1 、i - 1 或者 j :
i + 1 需满足:i + 1 < arr.length
i - 1 需满足:i - 1 >= 0
j 需满足:arr[i] == arr[j] 且 i != j
请你返回到达数组最后一个元素的下标处所需的 最少操作次数 。
注意:任何时候你都不能跳到数组外面。
示例 1:
输入:arr = [100,-23,-23,404,100,23,23,23,3,404]
输出:3
解释:那你需要跳跃 3 次,下标依次为 0 --> 4 --> 3 --> 9 。下标 9 为数组的最后一个元素的下标。
示例 2:
给你一个整数数组 arr 和一个整数 d 。每一步你可以从下标 i 跳到:
i + x ,其中 i + x < arr.length 且 0 < x <= d 。
i - x ,其中 i - x >= 0 且 0 < x <= d 。
除此以外,你从下标 i 跳到下标 j 需要满足:arr[i] > arr[j] 且 arr[i] > arr[k] ,其中下标 k 是所有 i 到 j 之间的数字(更正式的,min(i, j) < k < max(i, j))。
你可以选择数组的任意下标开始跳跃。请你返回你 最多 可以访问多少个下标。
给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。
一开始你在下标 0 处。每一步,你最多可以往前跳 k 步,但你不能跳出数组的边界。
也就是说,你可以从下标 i 跳到 [i + 1, min(n - 1, i + k)]
包含 两个端点的任意位置。
你的目标是到达数组最后一个位置(下标为 n - 1 ),你的 得分 为经过的所有数字之和。
请你返回你能得到的 最大得分 。
示例 1:
输入:nums = [1,-1,-2,4,-7,3], k = 2
输出:7
解释:你可以选择子序列 [1,-1,4,3] (上面加粗的数字),和为 7 。
示例 2:
给你一个下标从 0 开始的二进制字符串 s 和两个整数 minJump 和 maxJump 。
一开始,你在下标 0 处,且该位置的值一定为 '0' 。当同时满足如下条件时,你可以从下标 i 移动到下标 j 处:
i + minJump <= j <= min(i + maxJump, s.length - 1) 且 s[j] == '0'.
如果你可以到达 s 的下标 s.length - 1 处,请你返回 true ,否则返回 false 。
示例 1:
输入:s = "011010", minJump = 2, maxJump = 3
输出:true
解释:
第一步,从下标 0 移动到下标 3 。
第二步,从下标 3 移动到下标 5 。
给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
给定一个长度为 n 的 0 索引整数数组 nums。初始位置在下标 0。
每个元素 nums[i] 表示从索引 i 向后跳转的最大长度。
换句话说,如果你在索引 i 处,你可以跳转到任意 (i + j) 处:
0 <= j <= nums[i] 且 i + j < n
返回到达 n - 1 的最小跳跃次数。测试用例保证可以到达 n - 1。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2: